We studied the effects of fuel type, fuel load and their associated flammability attributes on growth and survival of Callitris intratropica saplings. Callitris intratropica is a fire‐sensitive conifer that is widespread across northern Australia, but its range is contracting because of frequent and intense fires. A small‐scale field experiment was used to compare the effect of three fuel types (grass, eucalypt litter and C. intratropica litter), and a mix of grass and eucalypt litter by varying fuel loads within their naturally occurring bounds, and measuring multiple flammability attributes. Fuel type had the strongest influence on flammability attributes and hence sapling survival. Grass burnt rapidly, producing high temperatures, while duration of flaming was longer for eucalypt litter. Grass–eucalypt litter mixtures had flammability attributes more like grass, while C. intratropica litter was difficult to burn. Fuel load had a secondary effect, with strong interactions between fuel type and load. Differences in sapling survival could be attributed to temperatures at 5 cm height; there was no additional effect of fuel type or canopy temperature. Sapling size variables were also important, and strongly correlated with bark thickness, so we could not identify the protective mechanism. Synthesis. Mortality of Callitris intratropica saplings was consistent with damage to the lower stem, because of the direct relationship with temperatures at 5 cm height. Our results demonstrate the existence of a grass–fire cycle in C. intratropica stands, whereby hot fires damage the stands and allow grass to invade, increasing the stand ignitability and combustibility and promoting further fires. Interrupting this cycle by reducing grass fuel loads and hence the frequency of hot fires should therefore be a management priority to safeguard C. intratropica populations. Our findings also highlight that, under a common climate, vegetation type can shape fire regimes, because fuel type strongly influences flammability attributes, which in turn act as a powerful filter of plant populations.
Global increases in fire frequency driven by anthropogenic greenhouse emissions and land use change could threaten unique and ancient species by creeping into long-term fire refugia. The perhumid and mountainous western half of Tasmania is a globally important refugium for palaeo-endemic, fire intolerant lineages, especially conifers. Reproductive strategy will be crucial to the resilience of these organisms under warmer, dryer and more fire prone climates. This study analysed clonal versus sexual reproduction in old growth plots dominated by the palaeo-endemic conifer Athrotaxis cupressoides (Cupressaceae), a species that lacks any traits to tolerate frequent landscape fire. Across most of the seven plots the amount of sexually derived individuals was lower than clonally derived with, on average, 60% of all stems belonging to the same multi-locus lineage (MLL) (i.e. were clonal). Some MLLs were large spanning over 10 s of metres and consisted of up to 62 stems. The high mortality after fire and the rarity of sexual regeneration means that the range of this fire-intolerant species is likely to contract under enhanced fire regimes and has a limited capacity to disperse via seed to available fire refugia in the landscape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.