Early detection of incipient faults in industrial processes is increasingly becoming important, as these faults can slowly develop into serious abnormal events, an emergency situation, or even failure of critical equipment. Multivariate statistical process monitoring methods are currently established for abrupt fault detection. Among these, canonical variate analysis (CVA) was proven to be effective for dynamic process monitoring. However, the traditional CVA indices may not be sensitive enough for incipient faults. In this work, an extension of CVA, called the canonical variate dissimilarity analysis (CVDA), is proposed for process incipient fault detection in nonlinear dynamic processes under varying operating conditions. To handle non-Gaussian distributed data, kernel density estimation was used for computing detection limits. A CVA dissimilarity-based index has been demonstrated to outperform traditional CVA indices and other dissimilarity-based indices, namely DISSIM, RDTCSA, and GCCA, in terms of sensitivity when tested on slowly developing multiplicative and additive faults in a CSTR under closed-loop control and varying operating conditions.
Incipient fault monitoring is becoming very important in large industrial plants, as the early detection of incipient faults can help avoid major plant failures. Recently, Canonical Variate Dissimilarity Analysis (CVDA) has been shown to be an efficient technique for incipient fault detection, especially under dynamic process conditions. CVDA can be extended to nonlinear processes by introducing kernel-based learning. Incipient fault monitoring requires kernels with both good interpolation and extrapolation abilities. However, conventional single kernels only exhibit one ability or the other, but not both. To overcome this drawback, this study presents a Mixed Kernel CVDA method for incipient fault monitoring in nonlinear dynamic processes. Due to the use of mixed kernels, both enhanced detection sensitivity and a better depiction of the growing fault severity in the monitoring charts are achieved. Looking ahead, this work takes a step towards understanding the impact of kernel behavior in process monitoring performance.
Kernel methods are a class of learning machines for the fast recognition of nonlinear patterns in any data set. In this paper, the applications of kernel methods for feature extraction in industrial process monitoring are systematically reviewed. First, we describe the reasons for using kernel methods and contextualize them among other machine learning tools. Second, by reviewing a total of 230 papers, this work has identified 12 major issues surrounding the use of kernel methods for nonlinear feature extraction. Each issue was discussed as to why they are important and how they were addressed through the years by many researchers. We also present a breakdown of the commonly used kernel functions, parameter selection routes, and case studies. Lastly, this review provides an outlook into the future of kernel-based process monitoring, which can hopefully instigate more advanced yet practical solutions in the process industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.