BACKGROUNDDuring the current worldwide pandemic, coronavirus disease 2019 was first diagnosed in Iceland at the end of February. However, data are limited on how SARS-CoV-2, the virus that causes Covid-19, enters and spreads in a population. METHODSWe targeted testing to persons living in Iceland who were at high risk for infection (mainly those who were symptomatic, had recently traveled to high-risk countries, or had contact with infected persons). We also carried out population screening using two strategies: issuing an open invitation to 10,797 persons and sending random invitations to 2283 persons. We sequenced SARS-CoV-2 from 643 samples. RESULTSAs of April 4, a total of 1221 of 9199 persons (13.3%) who were recruited for targeted testing had positive results for infection with SARS-CoV-2. Of those tested in the general population, 87 (0.8%) in the open-invitation screening and 13 (0.6%) in the random-population screening tested positive for the virus. In total, 6% of the population was screened. Most persons in the targeted-testing group who received positive tests early in the study had recently traveled internationally, in contrast to those who tested positive later in the study. Children under 10 years of age were less likely to receive a positive result than were persons 10 years of age or older, with percentages of 6.7% and 13.7%, respectively, for targeted testing; in the population screening, no child under 10 years of age had a positive result, as compared with 0.8% of those 10 years of age or older. Fewer females than males received positive results both in targeted testing (11.0% vs. 16.7%) and in population screening (0.6% vs. 0.9%). The haplotypes of the sequenced SARS-CoV-2 viruses were diverse and changed over time. The percentage of infected participants that was determined through population screening remained stable for the 20-day duration of screening. CONCLUSIONSIn a population-based study in Iceland, children under 10 years of age and females had a lower incidence of SARS-CoV-2 infection than adolescents or adults and males. The proportion of infected persons identified through population screening did not change substantially during the screening period, which was consistent with a beneficial effect of containment efforts. (Funded by deCODE Genetics-Amgen.
Background Little is known about the nature and durability of the humoral immune response to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods We measured antibodies in serum samples from 30,576 persons in Iceland, using six assays (including two pan-immunoglobulin [pan-Ig] assays), and we determined that the appropriate measure of seropositivity was a positive result with both pan-Ig assays. We tested 2102 samples collected from 1237 persons up to 4 months after diagnosis by a quantitative polymerase-chain-reaction (qPCR) assay. We measured antibodies in 4222 quarantined persons who had been exposed to SARS-CoV-2 and in 23,452 persons not known to have been exposed. Results Of the 1797 persons who had recovered from SARS-CoV-2 infection, 1107 of the 1215 who were tested (91.1%) were seropositive; antiviral antibody titers assayed by two pan-Ig assays increased during 2 months after diagnosis by qPCR and remained on a plateau for the remainder of the study. Of quarantined persons, 2.3% were seropositive; of those with unknown exposure, 0.3% were positive. We estimate that 0.9% of Icelanders were infected with SARS-CoV-2 and that the infection was fatal in 0.3%. We also estimate that 56% of all SARS-CoV-2 infections in Iceland had been diagnosed with qPCR, 14% had occurred in quarantined persons who had not been tested with qPCR (or who had not received a positive result, if tested), and 30% had occurred in persons outside quarantine and not tested with qPCR. Conclusions Our results indicate that antiviral antibodies against SARS-CoV-2 did not decline within 4 months after diagnosis. We estimate that the risk of death from infection was 0.3% and that 44% of persons infected with SARS-CoV-2 in Iceland were not diagnosed by qPCR.
The threat to human health posed by antibiotic resistance is of growing concern. Many commensal and pathogenic organisms have developed resistance to well established and newer antibiotics. The major selection pressure driving changes in the frequency of antibiotic resistance is the volume of drug use. However, establishing a quantitative relationship between the frequency of resistance and volume of drug use has proved difficult. Using population genetic methods and epidemiological observations, we report an analysis of the inf luence of the selective pressure imposed by the volume of drug use on temporal changes in resistance. Analytical expressions are derived to delineate key relationships between resistance and drug consumption. The analyses indicate that the time scale for emergence of resistance under a constant selective pressure is typically much shorter than the decay time after cessation or decline in the volume of drug use and that significant reductions in resistance require equally significant reductions in drug consumption. These results highlight the need for early intervention once resistance is detected.The increasing frequency with which antimicrobial-resistant microorganisms are recovered from patients in hospital and community settings has been commented on widely in recent years (1-3). Many species and strains of bacteria that are pathogenic to humans have developed resistance to both well established and newer antibiotics. Multiply resistant organisms give special cause for concern because they are responsible for increasing numbers of infections in intensive care units, hospitals in general, and communities (4). A recent example is the emergence of heteroresistant vancomycin resistant Staphylococcus aureus in hospital settings in Japan and the USA after 30 years of use as the drug of choice for the treatment of methicillin-resistant S. aureus and other Gram-positive infections (5). More alarming still is a recent report of the extensive spread of vancomycin-resistant (heteroresistant), methicillinresistant S. aureus strains in Japanese hospitals (6).A number of pathogen-specific epidemiological models of drug resistance have been proposed for both communityacquired (7-10) and hospital-acquired infections (11,12,14). The major selective pressure driving changes in the frequency of resistance is, in each case, the volume of drug use. Establishing a precise quantitative relationship between the frequency of resistance to a defined antibiotic and the volume of drug use has proved difficult because of the paucity of longitudinal studies that record resistance and drug use patterns (15-23). It is important to do so, however, given the urgent need to develop national and international antibiotic prescribing policies based on precise scientific understanding of key factors, which minimize the rate of evolution and spread of resistant organisms.In both clinical and community settings, patterns of emergence tend to be similar; typically, a long period of very low-level resistance precedes a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.