In this combined experimental and theoretical work we demonstrate at the example of tetraphenylporphyrins on Ag(111) how differences in individual adsorbate orbitals and their interaction with the substrate can be exploited to switch the appearance of the adsorbate in scanning tunneling microscopy (STM) experiments, such that electronically and chemically very similar large molecules become distinguishable in STM. In particular, an intermixed layer consisting of 2HTPP (TPP ) tetraphenylporphyrin), CoTPP, and FeTPP molecules on Ag(111) was investigated, and it is demonstrated that STM images acquired with different bias voltages constitute fingerprints of the different molecules within the intermixed layer. By means of density functional calculations the observed features could be explained in detail and traced back to a direct orbital interaction of the adsorbed molecule with the surface. The explicit consideration of the surface in the calculations therefore turned out to be decisive to achieve good agreement with experiment.
Novel κ(3) -N,N,O ligands tend to form 1D coordination polymer strands. Deposition of 1D structures on highly oriented pyrolytic graphite (HOPG) was achieved from diluted solutions and polymer strands have been studied on HOPG by AFM/STM. Single strands were mapped by STM and their electronic properties were subsequently characterized by current imaging tunneling spectroscopy (CITS). Periodic density functional calculations simulating a polymer strand deposited on a HOPG surface are in agreement with the zig-zag structure indicated by experimental findings. Both the observed periodicity and the Zn-Zn distances can be reproduced in the simulations. Van der Waals interactions were found to play a major role for the geometry of the isolated polymer strand, for the adsorption geometry on HOPG, as well as for the adsorption energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.