Abstract. The second edition of the satellite-derived climate data record CLARA ("The CM SAF Cloud, Albedo And Surface Radiation dataset from AVHRR data" -second edition denoted as CLARA-A2) is described. The data record covers the 34-year period from 1982 until 2015 and consists of cloud, surface albedo and surface radiation budget products derived from the AVHRR (Advanced Very High Resolution Radiometer) sensor carried by polar-orbiting, operational meteorological satellites. The data record is produced by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF) project as part of the operational ground segment. Its upgraded content and methodology improvements since edition 1 are described in detail, as are some major validation results. Some of the main improvements to the data record come from a major effort in cleaning and homogenizing the basic AVHRR level-1 radiance record and a systematic use of CALIPSO-CALIOP cloud information for development and validation purposes. Examples of applications studying decadal changes in Arctic summer surface albedo and cloud conditions are provided.
Abstract. The Satellite Application Facility on Climate Monitoring (CM-SAF) aims at the provision of satellite-derived geophysical parameter data sets suitable for climate monitoring. CM-SAF provides climatologies for Essential Climate Variables (ECV), as required by the Global Climate Observing System implementation plan in support of the UNFCCC. Several cloud parameters, surface albedo, radiation fluxes at the top of the atmosphere and at the surface as well as atmospheric temperature and humidity products form a sound basis for climate monitoring of the atmosphere. The products are categorized in monitoring data sets obtained in near real time and data sets based on carefully intercalibrated radiances. The CM-SAF products are derived from several instruments on-board operational satellites in geostationary and polar orbit as the Meteosat and NOAA satellites, respectively. The existing data sets will be continued using data from the instruments on-board the new joint NOAA/EUMETSAT Meteorological Operational Polar satellite. The products have mostly been validated against several ground-based data sets both in situ and remotely sensed. The accomplished accuracy for products derived in near real time is sufficient to monitor variability on diurnal and seasonal scales. The demands on accuracy increase the longer the considered time scale is. Thus, interannual variability or trends can only be assessed if the sensor data are corrected for jumps created by instrument changes on successive satellites and more subtle effects like instrument and orbit drift and also changes to the spectral response function of an instrument. Thus, a central goal of the recently started Continuous Development and Operations Phase of the CM-SAF (2007–2012) is to further improve all CM-SAF data products to a quality level that allows for studies of interannual variability.
Abstract. A new satellite-derived climate dataset – denoted CLARA-A1 ("The CM SAF cLoud, Albedo and RAdiation dataset from AVHRR data") – is described. The dataset covers the 28 yr period from 1982 until 2009 and consists of cloud, surface albedo, and radiation budget products derived from the AVHRR (Advanced Very High Resolution Radiometer) sensor carried by polar-orbiting operational meteorological satellites. Its content, anticipated accuracies, limitations, and potential applications are described. The dataset is produced by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF) project. The dataset has its strengths in the long duration, its foundation upon a homogenized AVHRR radiance data record, and in some unique features, e.g. the availability of 28 yr of summer surface albedo and cloudiness parameters over the polar regions. Quality characteristics are also well investigated and particularly useful results can be found over the tropics, mid to high latitudes and over nearly all oceanic areas. Being the first CM SAF dataset of its kind, an intensive evaluation of the quality of the datasets was performed and major findings with regard to merits and shortcomings of the datasets are reported. However, the CM SAF's long-term commitment to perform two additional reprocessing events within the time frame 2013–2018 will allow proper handling of limitations as well as upgrading the dataset with new features (e.g. uncertainty estimates) and extension of the temporal coverage.
Abstract. New cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS are presented. Two retrieval systems were developed that include components for cloud detection and cloud typing followed by cloud property retrievals based on the optimal estimation (OE) technique. The OE-based retrievals are applied to simultaneously retrieve cloud-top pressure, cloud particle effective radius and cloud optical thickness using measurements at visible, near-infrared and thermal infrared wavelengths, which ensures spectral consistency. The retrieved cloud properties are further processed to derive cloud-top height, cloud-top temperature, cloud liquid water path, cloud ice water path and spectral cloud albedo. The Cloud_cci products are pixel-based retrievals, daily composites of those on a global equal-angle latitude-longitude grid, and monthly cloud properties such as averages, standard deviations and histograms, also on a global grid. All products include rigorous propagation of the retrieval and sampling uncertainties. Grouping the orbital properties of the sensor families, six datasets have been defined, which are named AVHRR-AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-AATSR and MERIS+AATSR, each comprising a specific subset of all available sensors. The individual characteristics of the datasets are presented together with a summary of the retrieval systems and measurement records on which the dataset generation were based. Example validation results are given, based on comparisons to well-established reference observations, which demonstrate the good quality of the data. In particular the ensured spectral consistency and the rigorous Published by Copernicus Publications. M. Stengel et al.: Cloud_cci datasetsuncertainty propagation through all processing levels can be considered as new features of the Cloud_cci datasets compared to existing datasets. In addition, the consistency among the individual datasets allows for a potential combination of them as well as facilitates studies on the impact of temporal sampling and spatial resolution on cloud climatologies.
New methods and software for cloud detection and classification at high and midlatitudes using Advanced Very High Resolution Radiometer (AVHRR) data are developed for use in a wide range of meteorological, climatological, land surface, and oceanic applications within the Satellite Application Facilities (SAFs) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), including the SAF for Nowcasting and Very Short Range Forecasting Applications (NWCSAF) project. The cloud mask employs smoothly varying (dynamic) thresholds that separate fully cloudy or cloud-contaminated fields of view from cloud-free conditions. Thresholds are adapted to the actual state of the atmosphere and surface and the sun–satellite viewing geometry using cloud-free radiative transfer model simulations. Both the cloud masking and the cloud-type classification are done using sequences of grouped threshold tests that employ both spectral and textural features. The cloud-type classification divides the cloudy pixels into 10 different categories: 5 opaque cloud types, 4 semitransparent clouds, and 1 subpixel cloud category. The threshold method is fuzzy in the sense that the distances in feature space to the thresholds are stored and are used to determine whether to stop or to continue testing. They are also used as a quality indicator of the final output. The atmospheric state should preferably be taken from a short-range NWP model, but the algorithms can also run with climatological fields as input.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.