We develop a test statistic for testing the equality of two population mean vectors in the “large-p-small-n” setting. Such a test must surmount the rank-deficiency of the sample covariance matrix, which breaks down the classic Hotelling T2 test. The proposed procedure, called the generalized component test, avoids full estimation of the covariance matrix by assuming that the p components admit a logical ordering such that the dependence between components is related to their displacement. The test is shown to be competitive with other recently developed methods under ARMA and long-range dependence structures and to achieve superior power for heavy-tailed data. The test does not assume equality of covariance matrices between the two populations, is robust to heteroscedasticity in the component variances, and requires very little computation time, which allows its use in settings with very large p. An analysis of mitochondrial calcium concentration in mouse cardiac muscles over time and of copy number variations in a glioblastoma multiforme data set from The Cancer Genome Atlas are carried out to illustrate the test.
The Adaptive Lasso(Alasso) was proposed by Zou [J. Amer. Statist. Assoc. 101 (2006) 1418-1429 as a modification of the Lasso for the purpose of simultaneous variable selection and estimation of the parameters in a linear regression model. Zou (2006) established that the Alasso estimator is variable-selection consistent as well as asymptotically Normal in the indices corresponding to the nonzero regression coefficients in certain fixed-dimensional settings. In an influential paper, Minnier, Tian and Cai [J. Amer. Statist. Assoc. 106 (2011) 1371-1382 ] proposed a perturbation bootstrap method and established its distributional consistency for the Alasso estimator in the fixed-dimensional setting. In this paper, however, we show that this (naive) perturbation bootstrap fails to achieve second order correctness in approximating the distribution of the Alasso estimator. We propose a modification to the perturbation bootstrap objective function and show that a suitably studentized version of our modified perturbation bootstrap Alasso estimator achieves second-order correctness even when the dimension of the model is allowed to grow to infinity with the sample size. As a consequence, inferences based on the modified perturbation bootstrap will be more accurate than the inferences based on the oracle Normal approximation. We give simulation studies demonstrating good finite-sample properties of our modified perturbation bootstrap method as well as an illustration of our method on a real data set.
Unlike with independent data, smoothed bootstraps have received little consideration for time series, although data smoothing within resampling can improve bootstrap approximations, especially when target distributions depend on smooth population quantities (e.g., marginal densities). For approximating a broad class statistics formulated through statistical functionals (e.g., LL‐estimators, and sample quantiles), we propose a smooth bootstrap by modifying a state‐of‐the‐art (extended) tapered block bootstrap (TBB). Our treatment shows that the smooth TBB applies to time series inference cases not formally established with other TBB versions. Simulations also indicate that smoothing enhances the block bootstrap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.