The quadriceps femoris is traditionally described as a muscle group composed of the rectus femoris and the three vasti. However, clinical experience and investigations of anatomical specimens are not consistent with the textbook description. We have found a second tensor-like muscle between the vastus lateralis (VL) and the vastus intermedius (VI), hereafter named the tensor VI (TVI). The aim of this study was to clarify whether this intervening muscle was a variation of the VL or the VI, or a separate head of the extensor apparatus. Twenty-six cadaveric lower limbs were investigated. The architecture of the quadriceps femoris was examined with special attention to innervation and vascularization patterns. All muscle components were traced from origin to insertion and their affiliations were determined. A TVI was found in all dissections. It was supplied by independent muscular and vascular branches of the femoral nerve and lateral circumflex femoral artery. Further distally, the TVI combined with an aponeurosis merging separately into the quadriceps tendon and inserting on the medial aspect of the patella. Four morphological types of TVI were distinguished: Independent-type (11/26), VI-type (6/26), VL-type (5/26), and Common-type (4/26). This study demonstrated that the quadriceps femoris is architecturally different from previous descriptions: there is an additional muscle belly between the VI and VL, which cannot be clearly assigned to the former or the latter. Distal exposure shows that this muscle belly becomes its own aponeurosis, which continues distally as part of the quadriceps tendon.
BACKGROUND: Injury to the lateral femoral cutaneous nerve (LFCN) is a risk during the operative anterior approach to the hip joint. Although several anatomical studies have described the proximal course of the nerve in relation to the anterior superior iliac spine (ASIS) and the inguinal ligament, the distal course of the LFCN in the proximal aspect of the thigh has not been sufficiently studied. The aim of this cadaveric study was to examine the branching pattern of the nerve, with special consideration to the anterior approach to the hip joint. METHODS: Twenty-eight cadaveric hemipelves from 18 donors (10 paired and 8 unpaired specimens) were dissected. The LFCN branches were localized proximal to the inguinal ligament and traced distally into the area of the proximal aspect of the thigh. Distribution patterns of the nerve with respect to its relationship to the ASIS and the internervous plane of the anterior approach to the hip joint were recorded. RESULTS: We found 3 different branching patterns of the LFCN: sartorius-type (in 36% of the specimens), characterized by a dominant anterior nerve branch coursing along the lateral border of the sartorius muscle with no, or only a thin, posterior branch; posterior-type (in 32%), characterized by a strong posterior nerve branch; and fan-type (in 32%), characterized by multiple spreading nerve branches of equal thickness. In 50% of the specimens, the LFCN divided into 2 branches superior to the inguinal ligament. Sixty-two percent of the LFCN branches entered the proximal aspect of the thigh medial to the ASIS; 27%, above; and 11%, lateral to the ASIS. The LFCN consistently coursed within the deep layer of the subcutaneous fat tissue. CONCLUSIONS: Injury to branches of the LFCN cannot be avoided in approximately one-third of surgical dissections that use the anterior approach to the hip joint. To protect the anterior branch of the LFCN, the skin incision should be as lateral as possible. The posterior branch of the LFCN is most vulnerable in the proximal aspect of the anterior approach to the hip joint, where it can be expected to course within the deep layer of the subcutaneous tissue. Background: Injury to the lateral femoral cutaneous nerve (LFCN) is a risk during the operative anterior approach to the
The NCB DF combines conventional plating technique with polyaxial screw placement and angular stability. This combination technique shows promising results regarding union and mal-union rates in periprosthetic fractures in elderly and osteoporotic patients.
It was concluded that a compression sleeve improved the total integration of the balance control system and muscle coordination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.