SYNOPSISWater-soluble, random copolymers containing N 5-(4-hydroxybutyl ) -L-glutamine (host) and S-methylthio-L-cysteine (guest) have been prepared, fractionated, and characterized, with S-methylthio-L-cysteine serving as a model for cystine residues in proteins. From the thermally induced helix-coil transition curves of these copolymers in water a t neutral pH, the Zimm-Bragg parameters CJ and s for the helix-coil transition of "poly (L-cystine)" were deduced. The results show that the cystine model acts as a weak helix-breaker over the entire temperature range from 0 to 60°C. The implications of this finding are evaluated in the context of a general discussion of the Zimm-Rragg parameters for all the 20 naturally occurring amino acids
Summary
Zampanolide and its less active analog dactylolide compete with paclitaxel for binding to microtubules and represent a new class of microtubule-stabilizing agent (MSA). Mass spectrometry demonstrated that the mechanism of action of both compounds involved covalent binding to β-tubulin at residues N228 and H229 in the taxane site of the microtubule. Alkylation of N228 and H229 was also detected in α,β-tubulin dimers. However, unlike cyclostreptin, the other known MSA that alkylates β-tubulin, zampanolide was a strong MSA. Modeling the structure of the adducts, using the NMR-derived dactylolide conformation, indicated that the stabilizing activity of zampanolide is likely due to interactions with the M-loop. Our results strongly support the existence of the luminal taxane site of microtubules in tubulin dimers and that microtubule nucleation induction by MSAs may proceed through an allosteric mechanism.
Valerian extracts have been used for centuries to alleviate restlessness and anxiety albeit with unknown mechanism of action in vivo. We now describe a specific binding site on GABA(A) receptors with nM affinity for valerenic acid and valerenol, common constituents of valerian. Both agents enhanced the response to GABA at multiple types of recombinant GABA(A) receptors. A point mutation in the beta2 or beta3 subunit (N265M) of recombinant receptors strongly reduced the drug response. In vivo, valerenic acid and valerenol exerted anxiolytic activity with high potencies in the elevated plus maze and the light/dark choice test in wild type mice. In beta3 (N265M) point-mutated mice the anxiolytic activity of valerenic acid was absent. Thus, neurons expressing beta3 containing GABA(A) receptors are a major cellular substrate for the anxiolytic action of valerian extracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.