The prototypic cancer-predisposition disease Fanconi Anemia (FA) is identified by biallelic mutations in any one of twenty-three FANC genes. Puzzlingly, inactivation of one Fanc gene alone in mice fails to faithfully model the pleiotropic human disease without additional external stress. Here we find that FA patients frequently display FANC co-mutations. Combining exemplary homozygous hypomorphic Brca2/Fancd1 and Rad51c/Fanco mutations in mice phenocopies human FA with bone marrow failure, rapid death by cancer, cellular cancer-drug hypersensitivity and severe replication instability. These grave phenotypes contrast the unremarkable phenotypes seen in mice with single gene-function inactivation, revealing an unexpected synergism between Fanc mutations. Beyond FA, breast cancer-genome analysis confirms that polygenic FANC tumor-mutations correlate with lower survival, expanding our understanding of FANC genes beyond an epistatic FA-pathway. Collectively, the data establish a polygenic replication stress concept as a testable principle, whereby co-occurrence of a distinct second gene mutation amplifies and drives endogenous replication stress, genome instability and disease.
In both pro- and eukaryotes, the mutagenic and toxic DNA adduct O(6)-methylguanine (O(6)MeG) is subject to repair by alkyltransferase proteins via methyl group transfer. In addition, in prokaryotes, there are proteins with sequence homology to alkyltransferases, collectively designated as alkyltransferase-like (ATL) proteins, which bind to O(6)-alkylguanine adducts and mediate resistance to alkylating agents. Whether such proteins might enable similar protection in higher eukaryotes is unknown. Here we expressed the ATL protein of Escherichia coli (eATL) in mammalian cells and addressed the question whether it is able to protect them against the cytotoxic effects of alkylating agents. The Chinese hamster cell line CHO-9, the nucleotide excision repair (NER) deficient derivative 43-3B and the DNA mismatch repair (MMR) impaired derivative Tk22-C1 were transfected with eATL cloned in an expression plasmid and the sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was determined in reproductive survival, DNA double-strand break (DSB) and apoptosis assays. The results indicate that eATL expression is tolerated in mammalian cells and conferes protection against killing by MNNG in both wild-type and 43-3B cells, but not in the MMR-impaired cell line. The protection effect was dependent on the expression level of eATL and was completely ablated in cells co-expressing the human O(6)-methylguanine-DNA methyltransferase (MGMT). eATL did not protect against cytotoxicity induced by the chloroethylating agent lomustine, suggesting that O(6)-chloroethylguanine adducts are not target of eATL. To investigate the mechanism of protection, we determined O(6)MeG levels in DNA after MNNG treatment and found that eATL did not cause removal of the adduct. However, eATL expression resulted in a significantly lower level of DSBs in MNNG-treated cells, and this was concomitant with attenuation of G2 blockage and a lower level of apoptosis. The results suggest that eATL confers protection against methylating agents by masking O(6)MeG/thymine mispaired adducts, preventing them from becoming a substrate for mismatch repair-mediated DSB formation and cell death.
Fanconi Anemia (FA) is a prototypic genetic disease signified by heterogeneous phenotypes including cancer, bone marrow failure, short stature, congenital abnormalities, infertility, sub-mendelian birth rate, genome instability and high cellular sensitivity to cancer therapeutics1-4. Clinical diagnosis is confirmed by identifying biallelic, homo- or hemizygous mutations in any one of twenty-three FANC genes1,5. Puzzlingly, inactivation of one single Fanc gene in mice fails to faithfully model the human disease manifestations6-8. We here delineate a preclinical Fanc mouse model with mutations in two genes, Fancd1/Brca2 and Fanco/Rad51c, that recapitulates the severity and heterogeneity of the human disease manifestations including death by cancer at young age. Surprisingly, these grave phenotypes cannot be explained by the sum of phenotypes seen in mice with single gene inactivation, which are unremarkable. In contrast to expectations from classic epistasis analysis of genetic pathways, the data instead reveal an unexpected functional synergism of polygenic Fanc mutations. Importantly in humans, whole exome sequencing uncovers that FANC co-mutation in addition to the identified inactivating FANC gene mutation is a frequent event in FA patients. Collectively, the data establish a concept of polygenic stress as an important contributor to disease manifestations, with implications for molecular diagnostics.
10Classically, p53 tumor suppressor acts in transcription, apoptosis, and cell cycle arrest. Yet, 11 replication-mediated genomic instability is integral to oncogenesis, and p53 mutations promote 12 tumor progression and drug-resistance. By delineating human and murine separation-of-function 13 p53 alleles, we find that p53 null and gain-of-function (GOF) mutations exhibit defects in restart 14 of stalled or damaged DNA replication forks driving genomic instability independent of 15 transcription activation. By assaying protein-DNA fork interactions in single cells, we unveil a 16 p53-MLL3-enabled recruitment of MRE11 DNA replication restart nuclease. Importantly, p53 17 defects or depletion unexpectedly allow mutagenic RAD52 and POLq pathways to hijack stalled 18 forks, which we find reflected in p53 defective breast-cancer patient COSMIC mutational 19 signatures. These data uncover p53 as a keystone regulator of replication homeostasis within a 20 DNA restart network. Mechanistically, this has important implications for development of 21 2 resistance in cancer therapy. Combined, these results define an unexpected role for p53 22 suppression of replication genome instability. 23
<p>Antibodies used for immunohistochemistry, Western blot analysis and immunofluorescence.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.