Today's automated vehicles lack the ability to cooperate implicitly with others. This work presents a Monte Carlo Tree Search (MCTS) based approach for decentralized cooperative planning using macro-actions for automated vehicles in heterogeneous environments. Based on cooperative modeling of other agents and Decoupled-UCT (a variant of MCTS), the algorithm evaluates the state-action-values of each agent in a cooperative and decentralized manner, explicitly modeling the interdependence of actions between traffic participants. Macro-actions allow for temporal extension over multiple time steps and increase the effective search depth requiring fewer iterations to plan over longer horizons. Without predefined policies for macro-actions, the algorithm simultaneously learns policies over and within macro-actions. The proposed method is evaluated under several conflict scenarios, showing that the algorithm can achieve effective cooperative planning with learned macro-actions in heterogeneous environments.
Making the right decision in traffic is a challenging task that is highly dependent on individual preferences as well as the surrounding environment. Therefore it is hard to model solely based on expert knowledge. In this work we use Deep Reinforcement Learning to learn maneuver decisions based on a compact semantic state representation. This ensures a consistent model of the environment across scenarios as well as a behavior adaptation function, enabling on-line changes of desired behaviors without re-training. The input for the neural network is a simulated object list similar to that of Radar or Lidar sensors, superimposed by a relational semantic scene description. The state as well as the reward are extended by a behavior adaptation function and a parameterization respectively. With little expert knowledge and a set of mid-level actions, it can be seen that the agent is capable to adhere to traffic rules and learns to drive safely in a variety of situations.
Efficient driving in urban traffic scenarios requires foresight. The observation of other traffic participants, and the inference of their possible next actions depending on the own action is considered cooperative prediction and planning. Humans are well equipped with the capability to predict the actions of multiple interacting traffic participants and plan accordingly, without the need to directly communicate with others. Prior work has shown that it is possible to achieve effective cooperative planning without the need for explicit communication. However, the search space for cooperative plans is so large that the vast amount of the computational budget is spent on exploring the search space in unpromising regions that are far away from the solution. To accelerate the planning process, we combined learned heuristics with a cooperative planning method in order to guide the search towards regions with promising actions, yielding better results at lower computational costs.
Monte Carlo Tree Search (MCTS) has proven to be capable of solving challenging tasks in domains such as Go, chess and Atari. Previous research has developed parallel versions of MCTS, exploiting today's multiprocessing architectures. These studies focused on versions of MCTS for the discrete case. Our work builds upon existing parallelization strategies and extends them to continuous domains. In particular, leaf parallelization and root parallelization are studied and two final selection strategies that are required to handle continuous states in root parallelization are proposed. The evaluation of the resulting parallelized continuous MCTS is conducted using a challenging cooperative multi-agent system trajectory planning task in the domain of automated vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.