A reciprocal t(17;22)(q11.2;q11.2) was found in a female patient with neurofibromatosis type 1 (NF1) and in her affected daughter. Sequence analysis of cloned junction fragments traversing the breakpoints allowed the identification of the structures involved in the rearrangement. Aberrant bands in Southern hybridizations of restriction enzyme-digested DNA of the patient pointed to the disruption of the NF1 gene in intron 31. Semispecific polymerase chain reaction analysis of the genomic DNA of the patient with the specific primer anchored at NF1 exon 31 was used to obtain the breakpoint-spanning fragment of the derivative chromosome 17. The intron 31 sequence turned out to be interrupted within a large irregular (AT) repeat. The chromosome 22-derived sequence of the der(17) junction fragment allowed us to identify cosmids of the corresponding region from a chromosome 22 specific cosmid library. With the support of the breakpoint-spanning cosmids, the chromosome 22 region upstream of the fragment carried by the der(17) was characterized. Primers deduced from the sequence of this upstream region were used in combination with a primer in NF1 intron 31 distal to the breakpoint on chromosome 17 to amplify the der(22) junction fragment. The structure of the junction sequences suggested that the translocation had arisen by unequal homologous recombination between (AT)-rich repeats on chromosome 22 and on chromosome 17 in intron 31 of the NF1 gene. However, our data support the assumption of additional rearrangements prior to, or in the course of, the recombination event, leading to a loss of the sequences between the involved (AT) repeats on chromosome 22. In the direct vicinity of these (AT) repeats, two members of a previously undescribed low-copy repetitive sequence have been found, copies of which are also present on human chromosome 13.
We report on a microcephalic, growth-retarded newborn girl without major anomalies who has chromosome instability in lymphocytes and fibroblasts. Frequent involvement of bands 7p13, 7q34, 14q11, and 14q32 suggested the diagnosis of ataxia telangiectasia (AT) or a related disorder. Supportive evidence was radioresistant DNA synthesis in fibroblasts and radiation hypersensitivity of short-term lymphocyte cultures. Follow-up for nearly 4 years showed largely normal development, and no signs of telangiectasia, ataxia, or immunodeficiency. Serum AFP levels turned from elevated at age 5 months to normal at age 2 years. We propose that our patient belongs to the expanding category of "AT-related" genetic disorders, probably to the Nijmegen breakage syndrome.
Chromosome 16 contains multiple copy number variations (CNVs) that predispose to genomic disorders. Here, we differentiate pathogenic duplications of 16p11.2-p12.2 from microscopically similar euchromatic variants of 16p11.2. Patient 1 was a girl of 18 with autism, moderate intellectual disability, behavioural difficulties, dysmorphic features and a 7.71-Mb (megabase pair) duplication (16:21 521 005-29 233 146). Patient 2 had a 7.81-Mb duplication (16:21 382 561-29 191 527), speech delay and obsessional behaviour as a boy and, as an adult, short stature, macrocephaly and mild dysmorphism. The duplications contain 65 coding genes of which Polo-like kinase 1 (PLK1) has the highest likelihood of being haploinsufficient and, by implication, a triplosensitive gene. An additional 1.11-Mb CNV of 10q11.21 in Patient 1 was a possible modifier containing the G-protein-regulated inducer of neurite growth 2 (GPRIN2) gene. In contrast, the euchromatic variants in Patients 3 and 4 were amplifications from a 945-kb region containing non-functional immunoglobulin heavy chain (IGHV), hect domain pseudogene (HERC2P4) and TP53-inducible target gene 3 (TP53TG3) loci in proximal 16p11.2 (16:31 953 353-32 898 635). Paralogous pyrosequencing gave a total copy number of 3-8 in controls and 8 to >10 in Patients 3 and 4. The 16p11.2-p12.2 duplication syndrome is a recurrent genomic disorder with a variable phenotype including developmental delay, dysmorphic features, mild to severe intellectual disability, autism, obsessive or stereotyped behaviour, short stature and anomalies of the hands and fingers. It is important to differentiate pathogenic 16p11.2-p12.2 duplications from harmless, microscopically similar euchromatic variants of proximal 16p11.2, especially at prenatal diagnosis.
Chromosome replication was studied without synchronization in human lymphocyte and amniotic cell cultures visualizing very short 5-bromodeoxyuridine (BrdU) pulses by an immunologic technique (BAT). The findings agree in general with those facts known from earlier BrdU staining techniques. The very high sensitivity of BAT was shown to allow the detection of replication in a band where 1 in 200 nucleotides is replaced by BrdU. The main observations are: though the replication patterns after BAT appear strange the bands correspond to those described by the Paris Conference (1971). At the beginning of the S-phase a stepwise onset of replication in only a subset of R-bands is confirmed. There is a considerable difference in the sensitivity between early and late S (SE and SL) for the detection of BrdU pulses. This difference probably reflects a different spatial arrangement of chromatin in R-bands as compared with G-bands below the level of cytogenetic analysis. The use of short pulses did not reveal any additional subdivision of SE or SL. The correspondence between chromosomal bands and replicon clusters is discussed briefly with respect to the different time they need for replication.
Ellobius lutescens carries an apparently identical karyotype (2n = 17) in both sexes. On the basis of indirect evidence the unpaired chromosome 9 has been considered to represent the X chromosome of this species. We have obtained data to substantiate this view by four different techniques. After fusion of HPRT- RAG cells with E. lutescens fibroblasts we demonstrated that the enzymes HPRT and G6PD are localized on the presumptive X chromosome. By analysis of pachytene figures after silver staining we showed by electron microscopy that the single chromosome exhibits the typical features of an X chromosome in male meiosis. Hybridization of (GATA)4 and (GACA)4 oligonucleotide probes to E. lutescens DNA revealed several distinct bands in the high molecular weight range some of which appeared to be specific for the individual but not for the sex of the animal. Hybridization in situ of the (GATA)4 probe on metaphase spreads of E. lutescens did not highlight any particular chromosome segment but showed a significant deficit of these sequences in chromosome 9. These observations are discussed with respect to their bearing on X chromosome determination. Finally it is concluded that E. lutescens should be an ideal tool for testing candidate genes assumed to be involved in primary sex determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.