Massive multiple-input multiple-output (MIMO) is one of the main candidates to be included in the fifth generation (5G) cellular systems. For further system development it is desirable to have real-time testbeds showing possibilities and limitations of the technology. In this paper we describe the Lund University Massive MIMO testbed -LuMaMi. It is a flexible testbed where the base station operates with up to 100 coherent radio-frequency transceiver chains based on software radio technology. Orthogonal Frequency Division Multiplex (OFDM) based signaling is used for each of the 10 simultaneous users served in the 20 MHz bandwidth. Real time MIMO precoding and decoding is distributed across 50 Xilinx Kintex-7 FPGAs with PCI-Express interconnects. The unique features of this system are: (i) high throughput processing of 384 Gbps of real time baseband data in both the transmit and receive directions, (ii) low-latency architecture with channel estimate to precoder turnaround of less than 500 micro seconds, and (iii) a flexible extension up to 128 antennas. We detail the design goals of the testbed, discuss the signaling and system architecture, and show initial measured results for a uplink Massive MIMO over-the-air transmission from four single-antenna UEs to 100 BS antennas.
This paper sets up a framework for designing a massive multiple-input multiple-output (MIMO) testbed by investigating hardware (HW) and system-level requirements such as processing complexity, duplexing mode and frame structure. Taking these into account, a generic system and processing partitioning is proposed which allows flexible scaling and processing distribution onto a multitude of physically separated devices. Based on the given HW constraints such as maximum number of links and maximum throughput for peer-to-peer interconnections combined with processing capabilities, the framework allows to evaluate modular HW components. To verify our design approach, we present the LuMaMi (Lund University Massive MIMO) testbed which constitutes the first reconfigurable realtime HW platform for prototyping massive MIMO. Utilizing up to 100 base station antennas and more than 50 Field Programmable Gate Arrays, up to 12 user equipments are served on the same time/frequency resource using an LTElike Orthogonal Frequency Division Multiplexing time-division duplex-based transmission scheme. Proof-of-concept tests with this system show that massive MIMO can simultaneously serve a multitude of users in a static indoor and static outdoor environment utilizing the same time/frequency resource.
Spurred by the dramatic mobile IP growth and the emerging Internet of Things (IoT) and cloud-based applications, wireless networking is witnessing a paradigm shift. By fully exploiting the spatial degrees of freedom, the massive multipleinput-multiple-output (MIMO) technology promises significant gains in both data rates and link reliability. This paper presents a time-division duplex (TDD)-based 128-antenna massive MIMO prototyping system designed to operate on a 20 MHz bandwidth. Up to twelve single-antenna users can be served by the designed system at the same time. System model is provided and link-level simulation corresponding to our practical TDDbased massive MIMO prototyping system is conducted to validate our design and performance of the algorithms. Based on the system hardware design demonstrated in this paper, both uplink real-time video and downlink data transmissions are realized, and the experiment results show that 268.8 Mbps rate was achieved for eight single-antenna users using QPSK modulation. The maximum spectral efficiency of the designed system will be 80.64 bit/s/Hz by twelve single-antenna users with 256-QAM modulation.Index Terms-massive MIMO, prototyping system, software defined radio, TDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.