Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers of response to targeted agents. To uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines, which represent much of the tissue-type and genetic diversity of human cancers, with 130 drugs under clinical and preclinical investigation. In aggregate, we found mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing’s sarcoma cells harboring the EWS-FLI1 gene translocation to PARP inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.
The adverse effects of terrestrial solar ultraviolet radiation (UVR) (~295–400 nm) on the skin are well documented, especially in the UVB region (~295–320 nm). The effects of very long-wave UVA (>380 nm) and visible radiation (≥400 nm) are much less known. Sunscreens have been beneficial in inhibiting a wide range of photodamage, however most formulations provide very little protection in the long wave UVA region (380–400 nm) and almost none from shortwave visible wavelengths (400–420 nm). We demonstrate photodamage in this region for a number of different endpoints including cell viability, DNA damage (delayed cyclobutane pyrimidine dimers), differential gene expression (for genes associated with inflammation, oxidative stress and photoageing) and induction of oxidizing species in vitro in HaCaT keratinocytes and in vivo in human volunteers. This work has implications for phototherapy and photoprotection.
Excessive human exposure to solar ultraviolet radiation (UVR) continues to be a major public health concern, with skin cancer rates increasing year on year. The major protective measure is the use of synthetic UVR filters formulated into sunscreens, but there is growing concern that these chemicals cause damage to delicate marine ecosystems. One alternative is the use of biocompatible mycosporine-like amino acids (MAA), which occur naturally and are found predominantly in a wide range of marine species. Their role within nature is mainly thought to be photoprotective. This is a consequence of their optical properties but there is increasing evidence that they are also antioxidants at a chemical level, as well by activation of endogenous cell antioxidant defence mechanisms. However, their potential for human photoprotection is largely understudied. This review explores the role of MAA in nature and considers the literature available on the use of MAA within human models for photoprotection.
What's already known about this topic?• Action spectra (wavelength dependence) for erythema and the cutaneous formation of vitamin D overlap considerably in the ultraviolet (UV)B region.• Theoretically, sunscreens that inhibit erythema should also inhibit vitamin D synthesis.The study was approved by the Ethics Committee of the Medical University of Ł od z, Poland and done according to the Declaration of Helsinki. All participants (n = 79) gave written informed consent. Most were of Fitzpatrick skin type (FST) II and III. 32 The group demographics and study locations are summarized in Tables 1 and 2. Briefly, three groups of holidaymakers from Ł od z, Poland, spent a week during March
SummaryBackgroundSolar ultraviolet radiation (UVR) induces molecular and genetic changes in the skin, which result in skin cancer, photoageing and photosensitivity disorders. The use of sunscreens is advocated to prevent such photodamage; however, most formulations contain organic and inorganic UVR filters that are nonbiodegradable and can damage fragile marine ecosystems. Mycosporine‐like amino acids (MAAs) are natural UVR‐absorbing compounds that have evolved in marine species for protection against chronic UVR exposure in shallow‐water habitats.ObjectivesTo determine if palythine, a photostable model MAA, could offer protection against a range of UVR‐induced damage biomarkers that are important in skin cancer and photoageing.MethodsHaCaT human keratinocytes were used to assess the photoprotective potential of palythine using a number of end points including cell viability, DNA damage (nonspecific, cyclobutane pyrimidine dimers and oxidatively generated damage), gene expression changes (linked to inflammation, photoageing and oxidative stress) and oxidative stress. The antioxidant mechanism was investigated using chemical quenching and Nrf2 pathway activation assays.ResultsPalythine offered statistically significant protection (P < 0·005) against all end points tested even at extremely low concentrations (0·3% w/v). Additionally, palythine was found to be a potent antioxidant, reducing oxidatively generated stress, even when added after exposure.ConclusionsPalythine is an extremely effective multifunctional photoprotective molecule in vitro that has potential to be developed as a natural and biocompatible alternative to currently approved UVR filters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.