The transmission of Escherichia coli O157:H7 from manure-contaminated soil and irrigation water to lettuce plants was demonstrated using laser scanning confocal microscopy, epifluorescence microscopy, and recovery of viable cells from the inner tissues of plants. E. coli O157:H7 migrated to internal locations in plant tissue and was thus protected from the action of sanitizing agents by virtue of its inaccessibility. Experiments demonstrate that E. coli O157:H7 can enter the lettuce plant through the root system and migrate throughout the edible portion of the plant.
Membrane vesicles are released from the surfaces of many gram-negative bacteria during growth. Vesicles consist of proteins, lipopolysaccharide, phospholipids, RNA, and DNA. Results of the present study demonstrate that membrane vesicles isolated from the food-borne pathogen Escherichia coli O157:H7 facilitate the transfer of genes, which are then expressed by recipient Salmonella enterica serovar Enteritidis or E. coli JM109. Electron micrographs of purified DNA from E. coli O157:H7 vesicles showed large rosette-like structures, linear DNA fragments, and small open-circle plasmids. PCR analysis of vesicle DNA demonstrated the presence of specific genes from host and recombinant plasmids (hly, L7095, mobA, and gfp), chromosomal DNA (uidA and eaeA), and phage DNA (stx1 and stx2). The results of PCR and the Vero cell assay demonstrate that genetic material, including virulence genes, is transferred to recipient bacteria and subsequently expressed. The cytotoxicity of the transformed enteric bacteria was sixfold higher than that of the parent isolate (E. coli JM109). Utilization of the nonhost plasmid (pGFP) permitted the evaluation of transformation efficiency (ca. 10 3 transformants g of DNA ؊1 ) and demonstrated that vesicles can deliver antibiotic resistance. Transformed E. coli JM109 cells were resistant to ampicillin and fluoresced a brilliant green. The role vesicles play in genetic exchange between different species in the environment or host has yet to be defined.Many gram-negative bacteria produce membrane vesicles, suggesting that vesicle production is not purposeless; indeed, studies during the last two decades have presented strong evidence supporting the importance of vesicles. Typical vesicles released from the surfaces of gram-negative bacteria are 50 to 250 nm, spherical, and made up of outer membrane and encapsulated periplasmic components (4, 26). Vesicle components include outer membrane proteins, lipopolysaccharide, periplasmic proteins, phospholipids, DNA, and RNA (9,12,15,22,34,40). Vesicles from gram-negative bacteria were reported to fuse to both gram-positive and gram-negative bacteria and in some instances to promote lysis of the target cell (28). Moreover, vesicles may function as an alternative secretory pathway (3, 23) and promote adherence of the parent cell to host cells (17,32). By virtue of their small size, bilayer protecting envelope, and ability to integrate into the membranes of foreign bacteria and to adhere to or be engulfed by eukaryotic cells, a potential role of vesicles in delivery of virulence factors, including enzymes and toxins, is not unlikely (23). In fact, virulence factors associated with the parent strain, including proteases, phospholipases, autolysin, hemolysins, and Shiga toxins, have been isolated from vesicles (3,22,26,28).Aside from toxic compounds, DNA has also been isolated from vesicles. Vesicles produced by Pseudomonas aeruginosa were reported to contain DNA (22). Vesicles released by Neisseria gonorrhoeae harbor both linear and circular DNA, including ...
Plants of the genus Zingiber (Family Zingiberaceae) are widely used throughout the world as food and medicinal plants. They represent very popular herbal remedies in various traditional healing systems; in particular, rhizome of Zingiber spp. plants has a long history of ethnobotanical uses because of a plethora of curative properties. Antimicrobial activity of rhizome essential oil has been extensively confirmed in vitro and attributed to its chemical components, mainly consisting of monoterpene and sesquiterpene hydrocarbons such as α-zingiberene, ar-curcumene, β-bisabolene and β-sesquiphellandrene. In addition, gingerols have been identified as the major active components in the fresh rhizome, whereas shogaols, dehydrated gingerol derivatives, are the predominant pungent constituents in dried rhizome. Zingiber spp. may thus represent a promising and innovative source of natural alternatives to chemical food preservatives. This approach would meet the increasing concern of consumers aware of the potential health risks associated with the conventional antimicrobial agents in food. This narrative review aims at providing a literature overview on Zingiber spp. plants, their cultivation, traditional uses, phytochemical constituents and biological activities.
Staphylococcus aureus is a frequent cause of mastitis in dairy cows. However, pathogenesis of the infection has not been completely defined. We report the invasion of two strains of S. aureus into a bovine mammary epithelial cell line and a bovine mammary epithelial cell primary culture. Invasion of S. aureus into bovine mammary cells was time-dependent. Transmission electron microscopy of bovine mammary cells invaded by S. aureus showed intracellular replication of the bacterium within membrane-bound vacuoles. Invasion was reduced significantly when bovine mammary epithelial cells were treated with inhibitors of F-actin microfilament polymerization but not when these cells were treated with inhibitors of microtubule formation. Results indicated that S. aureus is capable of invading and replicating inside bovine mammary epithelial cells. Data also suggested that S. aureus invasion of bovine mammary epithelial cells requires active participation of specific components of the cytoskeleton of the epithelial cell.
Membrane vesicles released by Escherichia coli O157:H7 into culture medium were purified and analyzed for protein and DNA content. Electron micrographs revealed vesicles that are spherical, range in size from 20 to 100 nm, and have a complete bilayer. Analysis of vesicle protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrates vesicles that contain many proteins with molecular sizes similar to outer membrane proteins and a number of cellular proteins. Immunoblot (Western) analysis of vesicles suggests the presence of cell antigens. Treatment of vesicles with exogenous DNase hydrolyzed surface-associated DNA; PCR demonstrated that vesicles contain DNA encoding the virulence genes eae,stx1 and stx2, and uidA, which encodes for β-galactosidase. Immunoblot analysis of intact and lysed, proteinase K-treated vesicles demonstrate that Shiga toxins 1 and 2 are contained within vesicles. These results suggest that vesicles contain toxic material and transfer experiments demonstrate that vesicles can deliver genetic material to other gram-negative organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.