Objectives of this study were to adapt a commercial human protein C (PC) colorimetric assay for use in dogs and to investigate effects of various storage conditions. The human assay was modified by using pooled canine plasma for calibration and by increasing the activation time. PC activity was measured in fresh canine plasma and in plasma stored under various conditions. PC activity of some stored samples was significantly different from that of fresh plasma; however, differences were small. No difference was detected in samples stored under similar conditions but analyzed in different laboratories using similar methodology. Results of this study indicate that the human colorimetric assay is suitable for canine samples if pooled canine plasma is used for calibration, that Clinical and Laboratory Standards Institute sample storage guidelines developed for testing in humans are appropriate for dogs, and that comparisons of results from laboratories using similar methodology are legitimate.
Background. Serum bile acids (SBA) are used as a routine screening tool of liver function in dogs. Serum samples are usually shipped to a referral laboratory for quantitative analysis with an enzymatic chemistry analyzer. The canine SNAP Bile Acids Test (SNAP-BAT) provides an immediate, semi-quantitative measurement of bile acid concentrations in-house. With the SNAP-BAT, bile acids concentrations of 5–30 µmol/L are quantified, and results outside of that range are classified as <5 or >30 µmol/L. Agreement of the SNAP-BAT with the enzymatic method has not been extensively investigated.Objectives. The purposes of this prospective clinical study were to assess the precision of the SNAP-BAT and determine agreement of SNAP-BAT with results from an in-house chemistry analyzer.Methods. After verifying intra-assay precision of the SNAP-BAT, a prospective analysis was performed using blood samples collected from 56 dogs suspected to have liver disease. Each sample was analyzed with an enzymatic, in-house chemistry analyzer and the SNAP-BAT. Agreement between the two methods was statistically assessed using the κ index of agreement.Results. Intra-assay variability was minimal. The κ index for agreement between the SNAP-BAT and routine chemistry analyzer was between 0.752 and 0.819, indicating substantial to near perfect agreement.Conclusions. The SNAP-BAT is a highly accurate, semi-quantitative test that yields immediate results, and has very little intra-assay variability, particularly for results >30 µmol/L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.