PurposeHistorically, the process of positioning a patient prior to imaging verification used a set of permanent patient marks, or tattoos, placed subcutaneously. After aligning to these tattoos, plan specific shifts are applied and the position is verified with imaging, such as cone‐beam computed tomography (CBCT). Due to a variety of factors, these marks may deviate from the desired position or it may be hard to align the patient to these marks. Surface‐based imaging systems are an alternative method of verifying initial positioning with the entire skin surface instead of tattoos. The aim of this study was to retrospectively compare the CBCT‐based 3D corrections of patients initially positioned with tattoos against those positioned with the C‐RAD CatalystHD surface imager system.MethodsA total of 6000 individual fractions (600–900 per site per method) were randomly selected and the post‐CBCT 3D corrections were calculated and recorded. For both positioning methods, four common treatment site combinations were evaluated: pelvis/lower extremities, abdomen, chest/upper extremities, and breast. Statistical differences were evaluated using a paired sample Wilcoxon signed‐rank test with significance level of <0.01.ResultsThe average magnitudes of the 3D shift vectors for tattoos were 0.9 ± 0.4 cm, 1.0 ± 0.5 cm, 0.9 ± 0.6 cm and 1.4 ± 0.7 cm for the pelvis/lower extremities, abdomen, chest/upper extremities and breast, respectively. For the CatalystHD, the average magnitude of the 3D shifts for the pelvis/lower extremities, abdomen, chest/upper extremities and breast were 0.6 ± 0.3 cm, 0.5 ± 0.3 cm, 0.5 ± 0.3 cm and 0.6 ± 0.2 cm, respectively. Statistically significant differences (P < 0.01) in the 3D shift vectors were found for all four sites.ConclusionThis study shows that the overall 3D shift corrections for patients initially aligned with the C‐RAD CatalystHD were significantly smaller than those aligned with subcutaneous tattoos. Surface imaging systems can be considered a viable option for initial patient setup and may be preferable to permanent marks for specific clinics and patients.
Purpose With the advent of volumetric modulated arc therapy (VMAT) and intensity‐modulated radiation therapy (IMRT) treatment techniques, the requirement for more elaborate approaches in reviewing linac components’ integrity has become even more stringent. A possible solution to this challenge is to employ the usage of log files generated during treatment. The log files generated by the new generation of Elekta linacs record events at a higher frequency (25 Hz) than their predecessors, which allows for retrospective analysis and identification of subtle changes and provides another means of quality assurance. The ability to track machine components based on log files for each treatment can allow for constant monitoring of fraction consistency in addition to machine reliability. Using Elekta Agility log files, a set of tests were developed to evaluate the reliability and robustness of the multileaf collimators (MLCs). Methods To evaluate Elekta log file utilization for linac MLC QA effectiveness, five MLC test patterns were constructed to review the effects of leaf velocity and acceleration on positional accuracy, including gravitational effects for the Elekta MLC system. Each test was run five times in a particular setting to obtain reproducibility data and statistical averages. This study was performed on two identical Versa HD machines, each delivering a full set of test plans with all possible variations. Plans were delivered using Elekta's iCOMcat software and recorded log files were extracted. Log files were reformatted for readability and automatically analyzed in Matlab®. Results The Elekta Agility MLC system was shown to be capable of obtaining speeds within the range of 5–35 mm/s. MLC step and shoot tests have demonstrated the MLC system's capability of having positional repeatability, averaging 0.03‐ and 0.08‐mm offsets with and without gravitational effects, respectively. The IMRT‐specific tests have shown that gravitational effects are negligible with all positional tests averaging 0.5‐mm offsets. The largest speed root‐mean‐square error (RMSE) for the MLC system was found at the maximum speed of 35 mm/s with an average error of 0.8 mm. For slower speeds, the value was found to be much lower. Conclusion Utilizing log files has demonstrated the feasibility for higher precision of MLC motions to be reviewed, based on the performance tests that were instituted. Log files provide insight on the effects of friction, acceleration, and gravity, with MU's delivered that previously could not be reviewed in such detail. Based on our results, log file‐based QA has enhanced our ability to review performance, functionality, and perform QA on Elekta's MLC system.
Electronic portal imaging devices (EPIDs) could potentially be useful for intensity‐modulated radiation therapy (IMRT) QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed as imaging devices, not dosimeters, and as a result they do not inherently measure dose in tissue equivalent media. EPIDose (Sun Nuclear, Melbourne, FL) is a tool designed for the use of EPIDs in IMRT QA that uses raw MV EPID images (no additional build‐up and independent of gantry angle, but with dark and flood field corrections applied) to estimate absolute dose planes normal to the beam axis in a homogeneous media (i.e. similar to conventional IMRT QA methods). However, because of the inherent challenges of the EPID‐based dosimetry, validating and commissioning such a system must be done very carefully, by exploring the range of use cases and using well‐proven “standards” for comparison. In this work, a multi‐institutional study was performed to verify accurate EPID image to dose plane conversion over a variety of conditions. Converted EPID images were compared to 2D diode array absolute dose measurements for 188 fields from 28 clinical IMRT treatment plans. These plans were generated using a number of commercially available treatment planning systems (TPS) covering various treatment sites including prostate, head and neck, brain, and lung. The data included three beam energies (6, 10, and 15 MV) and both step‐and‐shoot and dynamic MLC fields. Out of 26,207 points of comparison over 188 fields analyzed, the average overall field pass rate was 99.7% when 3 mm/3% DTA criteria were used (range 94.0–100 per field). The pass rates for more stringent criteria were 97.8% for 2 mm/2% DTA (range 82.0–100 per field), and 84.6% for 1 mm/1% DTA (range 54.7–100 per field). Individual patient‐specific sites as well, as different beam energies, followed similar trends to the overall pass rates.PACS number: 87.53.Dq; 87.66.Jj
A DNA dosimeter can accurately determine the probability of DNA double-strand break (DSB), one of the most toxic effects of radiotherapy, for absorbed radiation doses from 25 to 200 Gy. This is an important step in demonstrating the viability of DNA dosimeters as a measurement technique for radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.