This article presents the concept, calculation method, and first results of the "Raw Material Consumption" (RMC) economy-wide material flow indicator for the European Union (EU). The RMC measures the final domestic consumption of products in terms of raw material equivalents (RME), i.e. raw materials used in the complete production chain of consumed products. We employed the hybrid input-output life cycle assessment method to calculate RMC. We first developed a highly disaggregated environmentally extended mixed unit input output table and then applied life cycle inventory data for imported products without appropriate representation of production within the domestic economy. Lastly, we treated capital formation as intermediate consumption. Our results show that services, often considered as a solution for dematerialization, account for a significant part of EU raw material consumption, which emphasizes the need to focus on the full production chains and dematerialization of services. Comparison of the EU's RMC with its domestic extraction shows that the EU is nearly self-sufficient in biomass and nonmetallic minerals but extremely dependent on direct and indirect imports of fossil energy carriers and metal ores. This implies an export of environmental burden related to extraction and primary processing of these materials to the rest of the world. Our results demonstrate that internalizing capital formation has significant influence on the calculated RMC.
The mass of material consumed by a population has become a useful proxy for measuring environmental pressure. The "raw material equivalents" (RME) metric of material consumption addresses the issue of including the full supply chain (including imports) when calculating national or product level material impacts. The RME calculation suffers from data availability, however, as quantitative data on production practices along the full supply chain (in different regions) is required. Hence, the RME is currently being estimated by three main approaches: (1) assuming domestic technology in foreign economies, (2) utilizing region-specific life-cycle inventories (in a hybrid framework), and (3) utilizing multi-regional input-output (MRIO) analysis to explicitly cover all regions of the supply chain. While the first approach has been shown to give inaccurate results, this paper focuses on the benefits and costs of the latter two approaches. We analyze results from two key (MRIO and hybrid) projects modeling raw material equivalents, adjusting the models in a stepwise manner in order to quantify the effects of individual conceptual elements. We attempt to isolate the MRIO gap, which denotes the quantitative impact of calculating the RME of imports by an MRIO approach instead of the hybrid model, focusing on the RME of EU external trade imports. While, the models give quantitatively similar results, differences become more pronounced when tracking more detailed material flows. We assess the advantages and disadvantages of the two approaches and look forward to ways to further harmonize data and approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.