Previously we reported the unique Cryptosporidium sp. “c” genotype (e.g., Sbey03c, Sbey05c, Sbld05c, Sltl05c) from three species of Spermophilus ground squirrel (Spermophilus beecheyi, Spermophilus beldingi, Spermophilus lateralis) located throughout California, USA. This follow-up work characterizes the morphology and animal infectivity of this novel genotype as the final step in proposing it as a new species of Cryptosporidium. Analysis of sequences of 18S rRNA, actin, and HSP70 genes of additional Cryptosporidium isolates from recently sampled California ground squirrels (S. beecheyi) confirms the presence of the unique Sbey-c genotype in S. beecheyi. Phylogenetic and BLAST analysis indicates that the c-genotype in Spermophilus ground squirrels is distinct from Cryptosporidium species/genotypes from other host species currently available in GenBank. We propose to name this c-genotype found in Spermophilus ground squirrels as Cryptosporidium rubeyi n. sp. The mean size of C. rubeyi n. sp. oocysts is 4.67 (4.4–5.0) μm × 4.34 (4.0–5.0) μm, with a length/width index of 1.08 (n = 220). Oocysts of C. rubeyi n. sp. are not infectious to neonatal BALB/c mice and Holstein calves. GenBank accession numbers for C. rubeyi n. sp. are DQ295012, AY462233, and KM010224 for the 18S rRNA gene, KM010227 for the actin gene, and KM010229 for the HSP70 gene.
The infiuence of crude terpenoid content on in vitro organic matter digestibility (IVOMD) was determined for basin big sagebrush (ArteMia trident& Nutt. ssp. tridentata), Wyoming big sagebrush (A.t. ssp. wyomingensis Beetle and Young), mountain big sagebrush (A.t. ssp. vaseyana [Rydb.] Beetle), and black sagebrush (A. nova Nels.). IVOMD was determined using mule deer (OdocoiIeus hemionus hemionus), sheep (Ovis ammon a&s), and steer (Bos taurus) rumen inocula with current year's growth collected from the 4 taxa at a common site on 1 Jan., 15 Feb., and 1 Apr. 1981. All inocuia had similar digestive efficiency. Extracting crude terpenoids from foliage increased IVOMD by an average of 12.3% overall. Few differences in IVOMD among taxa and dates were evident in foliage after crude terpenoids had been extracted. Order of increasing digestibility among taxa without crude terpenoids extracted was black sagebrush, mountain, Wyoming, and basin big sagebrushes, respectively. IVOMD generally Increased from January to April as crude terpenoids decreased. Crude terpenoid concentrations were lowest in mountain big sagebrush, intermediate in black sagebrush and Wyoming big sagebrush, and greatest in basin big sagebrush.
Livestock obtain forage by grazing on rangeland. In California annual rangelands, residual dry matter is commonly used to determine proper grazing levels. Rangeland forage biomass and quality can degrade dramatically during the dormant summer period. We examined 25 sites across an annual rainfall gradient (183-492 mm) over 3 contrasting rainfall yr (2015-2017) that varied from 57% to 152% of average annual precipitation. Overall fractional biomass loss was 54.4% (range = 46.5-61.5%) with greater fractional losses occurring in dry years. Biomass losses were related to the amount of peak standing crop and plant composition-both a function of annual precipitation. Fractional seasonal losses from the peak standing biomass in 2015 = 962 kg/ha (61.5% seasonal; 9.7% monthly), 2016 = 1 541 kg/ha (55.0% seasonal; 8.7%monthly) and 2017 = 1 923 kg/ha (46.5% seasonal; 7.3%, monthly). Forage quality metrics were strongly affected by summer weathering processes. Crude protein concentrations decreased by 33. 6%, 27.7%, and 21.0% in 2015, 2016, and 2017, respectively. In contrast, relative concentrations of fiber and lignin (acid detergent fiber [ADF] = cellulose + lignin) and in the weathered biomass showed increases for
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.