The snow avalanche climate of the western United States has long been suspected to consist of three main climate zones that relate with different avalanche characteristics: coastal, intermountain, and continental. The coastal zone of the Pacific mountain ranges is characterized by abundant snowfall, higher snow densities, and higher temperatures. The continental zone of the Colorado Rockies is characterized by lower temperatures, lower snowfall, lower snow densities, higher snow temperature gradients, and a more persistently unstable snowpack resulting from depth hoar. The intermountain zone of Utah, Montana, and Idaho is intermediate between the other two zones. A quantitative analysis of snow avalanche climate of the region was conducted based on Westwide Avalanche Network data from 1969 to 1995. A binary avalanche climate classification, based on well-known thresholds and ranges of snowpack and climatic variables, illustrates the broadscale climatology of the three major zones, some spatially heterogeneous patterns, and variations with elevation. Widespread spatial shifts toward more coastal conditions occurred during 1985/86 and 1991/92, and shifts toward more continental conditions occurred during 1976/77 and 1987/88. Height anomalies at 500 mb explain many of these shifts, but daily plots of climate and avalanche variables during seasonal extremes for sites in northern Utah also illustrate the importance of understanding snowpack and weather variations that occur at daily to weekly timescales. Data from several central Rocky Mountain sites indicate some relationships with the Pacific-North American teleconnection pattern and the Pacific decadal oscillation, illustrating the importance of applying long-term records in an avalanche hazard assessment.
This conceptual model of avalanche hazard identifies the key components of avalanche hazard and structures them into a systematic, consistent workflow for hazard and risk assessments. The method is applicable to all types of avalanche forecasting operations, and the underlying principles can be applied at any scale in space or time. The concept of an avalanche problem is introduced, describing how different types of avalanche problems directly influence the assessment and management of the risk. Four sequential questions are shown to structure the assessment of avalanche hazard, namely: (1) What type of avalanche problem(s) exists? (2) Where are these problems located in the terrain? (3) How likely is it that an avalanche will occur? and (4) How big will the avalanche be? Our objective was to develop an underpinning for qualitative hazard and risk assessments and address this knowledge gap in the avalanche forecasting literature. We used judgmental decomposition to elicit the avalanche forecasting process from forecasters and then described it within a risk-based framework that is consistent with other natural hazards disciplines.
Abstract. Dry-snow slab avalanches are generally caused by a sequence of fracture processes including (1) failure initiation in a weak snow layer underlying a cohesive slab, (2) crack propagation within the weak layer and (3) tensile fracture through the slab which leads to its detachment. During the past decades, theoretical and experimental work has gradually led to a better understanding of the fracture process in snow involving the collapse of the structure in the weak layer during fracture. This now allows us to better model failure initiation and the onset of crack propagation, i.e., to estimate the critical length required for crack propagation. On the other hand, our understanding of dynamic crack propagation and fracture arrest propensity is still very limited.To shed more light on this issue, we performed numerical propagation saw test (PST) experiments applying the discrete element (DE) method and compared the numerical results with field measurements based on particle tracking. The goal is to investigate the influence of weak layer failure and the mechanical properties of the slab on crack propagation and fracture arrest propensity. Crack propagation speeds and distances before fracture arrest were derived from the DE simulations for different snowpack configurations and mechanical properties. Then, in order to compare the numerical and experimental results, the slab mechanical properties (Young's modulus and strength) which are not measured in the field were derived from density. The simulations nicely reproduced the process of crack propagation observed in field PSTs. Finally, the mechanical processes at play were analyzed in depth which led to suggestions for minimum column length in field PSTs.
ABSTRACT. Measurements of the mechanical properties of snow are essential for improving our understanding and the prediction of snow failure and hence avalanche release. We performed fracture mechanical experiments in which a crack was initiated by a saw in a weak snow layer underlying cohesive snow slab layers. Using particle tracking velocimetry (PTV), the displacement field of the slab was determined and used to derive the mechanical energy of the system as a function of crack length. By fitting the estimates of mechanical energy to an analytical expression, we determined the slab effective elastic modulus and weak layer specific fracture energy for 80 different snowpack combinations, including persistent and nonpersistent weak snow layers. The effective elastic modulus of the slab ranged from 0.08 to 34 MPa and increased with mean slab density following a power-law relationship. The weak layer specific fracture energy ranged from 0.08 to 2.7 J m −2 and increased with overburden. While the values obtained for the effective elastic modulus of the slab agree with previously published low-frequency laboratory measurements over the entire density range, the values of the weak layer specific fracture energy are in some cases unrealistically high as they exceeded those of ice. We attribute this discrepancy to the fact that our linear elastic approach does not account for energy dissipation due to non-linear parts of the deformation in the slab and/or weak layer, which would undoubtedly decrease the amount of strain energy available for crack propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.