In this paper we present a new algorithm for parameter-free clustering by mode seeking. Mode seeking, especially in the form of the mean shift algorithm, is a widely used strategy for clustering data, but at the same time prone to poor performance if the parameters are not chosen correctly. We propose to form a clustering ensemble consisting of repeated and bootstrapped runs of the recent kNN mode seeking algorithm, an algorithm which is faster than ordinary mean shift and more suited for high dimensional data. This creates a robust mode seeking clustering algorithm with respect to the choice of hyper-parameters and high dimensional input spaces, while at the same inheriting all other strengths of mode seeking in general. We demonstrate promising results on a number of synthetic and real data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.