We describe the complete mitochondrial genome sequence of the Black Lion Tamarin, an endangered primate species endemic to the Atlantic Rainforest of Brazil. We assembled the Leontopithecus chrysopygus mitogenome, through analysis of 523M base pairs (bp) of short reads produced by next-generation sequencing (NGS) on the Illumina Platform, and investigated the presence of nuclear mitochondrial pseudogenes and heteroplasmic sites. Additionally, we conducted phylogenetic analyses using all complete mitogenomes available for primates until June 2017. The single circular mitogenome of BLT showed organization and arrangement that are typical for other vertebrate species, with a total of 16618 bp, containing 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 non-coding region (D-loop region). Our full phylogenetic tree is based on the most comprehensive mitogenomic dataset for Callitrichidae species to date, adding new data for the Leontopithecus genus, and discussing previous studies performed on primates. Moreover, the mitochondrial genome reported here consists of a robust mitogenome with 3000X coverage, which certainly will be useful for further phylogenetic and evolutionary analyses of Callitrichidae and higher taxa.
Habitat loss and fragmentation are considered the major treats to worldwide biodiversity. Carnivores in particular can be more sensitive to landscape modification due to their low occurrence density and large home ranges. Population structuring of Puma concolor has been already reported as a consequence of extensive human activities in the North American continent. Here, we investigated the occurrence of fine-scale population structuring in the South American cougar population, contrasting two conservation areas immersed in a highly human-fragmented landscape dominated by the presence of sugar cane monoculture, roads, and urbanization, including a series of dams in the Tietê River which enlarges its water body. Seven microsatellites were amplified using non-invasive DNA obtained from fecal samples. We conducted genetic clustering analyses using Bayesian and factorial components. We also performed genetic differentiation analyses by fixation indices (F st and D est ). Two genetic clusters represented by individuals from each area were found, indicating the occurrence of gene flow reduction between the areas. The intense human-induced landscape modification-which includes the Tietê River water body enlargement, imposing physical barriers to the movement of the individuals-could explain the gene flow reduction. Increasing connectivity among the preserved areas can mitigate such effects, and the creation of corridors or further management actions such as individual translocation to ensure gene flow in the highly-modified landscape may be essential for maintaining the genetic and demographic health of the species and its long-term persistence.
Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non‐detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non‐governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer‐reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non‐detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio‐temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large‐scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.