Postinfarct congestive heart failure is one of the leading causes of morbidity and mortality in developed and developing countries. The main purpose of this study was to investigate whether transplantation of bone marrow stromal cells (BMSC) directly into the myocardium could improve the performance of healed infarcted rat hearts. Cell culture medium with or without BMSC was injected into borders of cardiac scar tissue 4 wk after experimental infarction. Cardiac performance was evaluated 2 wk after cellular (n = 10) or medium (n = 10) injection by electro- and echocardiography. Histological study was performed 3 wk after treatment. Electrocardiography of BMSC-treated infarcted rats showed electrical and mechanical parameters more similar to those in control than in medium-treated animals: a normal frontal QRS axis in 6 of 10 BMSC-treated and all control rats and a rightward deviation of the QRS axis in all 10 medium-treated animals. BMSC treatment, assessed by echocardiography, improved fractional shortening (39.00 +/- 4.03%) compared with medium-treated hearts (18.20 +/- 0.74%) and prevented additional changes in cardiac geometry. Immunofluorescence microscopy revealed colocalization of 4',6-diamidino-2-phenylindole-labeled nuclei of transplanted cells with cytoskeletal markers for cardiomyocytes and smooth muscle cells, indicating regeneration of damaged myocardium and angiogenesis. These data provide strong evidence that BMSC implantation can improve cardiac performance in healed infarctions and open new promising therapeutic opportunities for patients with postinfarction heart failure.
Tritrichomonas foetus and Trichomonas vaginalis are protists that undergo closed mitosis: the nuclear envelope remains intact and the spindle remains extranuclear. Here we show, in disagreement with previous studies, that the axostyle does not disappear during mitosis but rather actively participates in it. We document the main structural modifications of the cell during its cell cycle using video enhanced microscopy and computer animation, bright field light microscopy, confocal laser scanning microscopy, and scanning and transmission electron microscopy. We propose six phases in the trichomonad's cell cycle: an orthodox interphase, a pre-mitotic phase, and four stages during the cell division process. We report that in T. foetus and T. vaginalis: a) all skeletal structures such as the costa, pelta-axostyle system, basal bodies, flagella, and associated filaments of the mastigont system are duplicated in a pre-mitotic phase; b) the axostyle does not disappear during mitosis, otherwise playing a fundamental role in this process; c) axostyles participate in the changes in the cell shape, contortion of the anterior region of the cell, and karyokinesis; d) flagella are not under assembly during mitosis, as previously stated by others, but completely formed before it; and e) cytokinesis is powered in part by cell locomotion.
Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC) injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively). Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.