Although gene expression has been studied in bacteria for decades, many aspects of the bacterial transcriptome remain poorly understood. Transcript structure, operon linkages, and information on absolute abundance all provide valuable insights into gene function and regulation, but none has ever been determined on a genome-wide scale for any bacterium. Indeed, these aspects of the prokaryotic transcriptome have been explored on a large scale in only a few instances, and consequently little is known about the absolute composition of the mRNA population within a bacterial cell. Here we report the use of a high-throughput sequencing-based approach in assembling the first comprehensive, single-nucleotide resolution view of a bacterial transcriptome. We sampled the Bacillus anthracis transcriptome under a variety of growth conditions and showed that the data provide an accurate and high-resolution map of transcript start sites and operon structure throughout the genome. Further, the sequence data identified previously nonannotated regions with significant transcriptional activity and enhanced the accuracy of existing genome annotations. Finally, our data provide estimates of absolute transcript abundance and suggest that there is significant transcriptional heterogeneity within a clonal, synchronized bacterial population. Overall, our results offer an unprecedented view of gene expression and regulation in a bacterial cell.Although more than a thousand bacterial genomes have been sequenced, our understanding of bacterial transcriptomes has lagged far behind (see the NIH database at http: //www.ncbi.nlm.nih.gov/genomes/genlist.cgi?taxidϭ2&type ϭ0&nameϭComplete%20Bacteria). The physical structure of prokaryotic transcriptomes-operon linkages and transcript boundaries, for instance-is not defined on a genomewide level for any species. Even though this information represents a critical step in understanding the functional and regulatory architecture of the genome, it has been explored on a large scale (Ͼ10% of the transcriptome) in only a few instances (6, 16). Similarly, although global gene expression in bacteria is routinely studied in a relative sense, where expression patterns occurring in two or more conditions are compared, there have been few attempts to comprehensively profile a bacterial transcriptome from an unbiased perspective. Consequently, little is known about the absolute composition of the mRNA population within a bacterial cell or about how individual cells' mRNA content might differ.Recent advances in high-throughput DNA sequencing have made it possible to define nucleic acid populations at an unprecedented depth and resolution. Here we report the use of a sequencing-based approach (RNA-Seq) (17, 24) in assembling the first comprehensive, single-nucleotide resolution view of a bacterial transcriptome. Sterne (34F 2 ). B. anthracis Sterne (34F 2 ) was grown in modified G medium (MGM) at 37°C (with shaking at 250 rpm) and in MGM plus 0.8% sodium bicarbonate in 14 to 15% CO 2 at 37°C (with shaking at 150...
The asbABCDEF gene cluster from Bacillus anthracis is responsible for biosynthesis of petrobactin, a catecholate siderophore that functions in both iron acquisition and virulence in a murine model of anthrax. We initiated studies to determine the biosynthetic details of petrobactin assembly based on mutational analysis of the asb operon, identification of accumulated intermediates, and addition of exogenous siderophores to asb mutant strains. As a starting point, in-frame deletions of each of the genes in the asb locus (asbABCDEF) were constructed. The individual mutations resulted in complete abrogation of petrobactin biosynthesis when strains were grown on iron-depleted medium. However, in vitro analysis showed that each asb mutant grew to a very limited extent as vegetative cells in iron-depleted medium. In contrast, none of the B. anthracis asb mutant strains were able to outgrow from spores under the same culture conditions. Provision of exogenous petrobactin was able to rescue the growth defect in each asb mutant strain. Taken together, these data provide compelling evidence that AsbA performs the penultimate step in the biosynthesis of petrobactin, involving condensation of 3,4-dihydroxybenzoyl spermidine with citrate to form 3,4-dihydroxybenzoyl spermidinyl citrate. As a final step, the data reveal that AsbB catalyzes condensation of a second molecule of 3,4-dihydroxybenzoyl spermidine with 3,4-dihydroxybenzoyl spermidinyl citrate to form the mature siderophore. This work sets the stage for detailed biochemical studies with this unique acyl carrier protein-dependent, nonribosomal peptide synthetase-independent biosynthetic system.
Human astroviruses (HAstV) are understudied positive-strand RNA viruses that cause gastroenteritis mostly in children and the elderly. Three clades of astroviruses, classic, MLBtype and VA-type have been reported in humans. One limitation towards a better understanding of these viruses has been the lack of a physiologically relevant cell culture model that supports growth of all clades of HAstV. Herein, we demonstrate infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. A detailed investigation of infection of VA1, a member of the non-canonical HAstV-VA/HMO clade, showed robust replication in HIE derived from different patients and from different intestinal regions independent of the cellular differentiation status. Flow cytometry and immunofluorescence analysis revealed that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes, in HIE cultures. RNA profiling of VA1-infected HIE uncovered that the host response to infection is dominated by interferon (IFN)-mediated innate immune responses. A comparison of the antiviral host response in non-transformed HIE and transformed human colon carcinoma Caco-2 cells highlighted significant differences between these cells, including an increased magnitude of the response in HIE. Additional studies confirmed the sensitivity of VA1 to exogenous IFNs, and indicated that the endogenous IFN response of HIE to curtail the growth of strains from all three clades. Genotypic variation in the permissiveness of different HIE lines to HAstV could be overcome by pharmacologic inhibition of JAK/STAT PLOS Pathogens | https://doi.and ALSAC to SSC.; NIH R21 NS101371 to DW; Wellcome Trust: Ref 207498/Z/ signaling. Collectively, our data identify HIE as a universal infection model for HAstV and an improved model of the intestinal epithelium to investigate enteric virus-host interactions. Author summaryHuman astroviruses (HAstV) are understudied positive-strand RNA viruses that typically cause gastroenteritis mostly in children and the elderly, but more recent studies also implicate them in neurological disease in immunocompromised patients. To better understand these viruses, a physiologically relevant cell culture model that supports growth of all clades of HAstV would be highly beneficial. Herein, we demonstrated robust infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts from different patients and intestinal regions, making HIE a valuable model to study HAstV biology. Using this system, we identify for the first time that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes. Analysis of the antiviral host response to infection demonstrated that HIE respond to infection with a type I and III interferon response. This response reduced HAstV replication and when blocked resulted in increased infection. Establis...
The metabolic pathways of central carbon metabolism, glycolysis and oxidative phosphorylation (OXPHOS), are important host factors that determine the outcome of viral infections and can be manipulated by some viruses to favor infection. However, mechanisms of metabolic modulation and their effects on viral replication vary widely. Herein, we present the first metabolomics and energetic profiling of norovirus-infected cells, which revealed increases in glycolysis, OXPHOS, and the pentose phosphate pathway (PPP) during murine norovirus (MNV) infection. Inhibiting glycolysis with 2-deoxyglucose (2DG) in macrophages revealed that glycolysis is an important factor for optimal MNV infection, while inhibiting the PPP and OXPHOS showed a relatively minor impact of these pathways on MNV infection. 2DG affected an early stage in the viral life cycle after viral uptake and capsid uncoating, leading to decreased viral protein production and viral RNA. The requirement of glycolysis was specific for MNV (but not astrovirus) infection, independent of the type I interferon antiviral response, and unlikely to be due to a lack of host cell nucleotide synthesis. MNV infection increased activation of the protein kinase Akt, but not AMP-activated protein kinase (AMPK), two master regulators of cellular metabolism, implicating Akt signaling in upregulating host metabolism during norovirus infection. In conclusion, our findings suggest that the metabolic state of target cells is an intrinsic host factor that determines the extent of norovirus replication and implicates glycolysis as a virulence determinant. They further point to cellular metabolism as a novel therapeutic target for norovirus infections and improvements in current human norovirus culture systems. IMPORTANCE Viruses depend on the host cells they infect to provide the machinery and substrates for replication. Host cells are highly dynamic systems that can alter their intracellular environment and metabolic behavior, which may be helpful or inhibitory for an infecting virus. In this study, we show that macrophages, a target cell of murine norovirus (MNV), increase glycolysis upon viral infection, which is important for early steps in MNV infection. Human noroviruses (hNoV) are a major cause of gastroenteritis globally, causing enormous morbidity and economic burden. Currently, no effective antivirals or vaccines exist for hNoV, mainly due to the lack of high-efficiency in vitro culture models for their study. Thus, insights gained from the MNV model may reveal aspects of host cell metabolism that can be targeted for improving hNoV cell culture systems and for developing effective antiviral therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.