Pierce's disease (PD) limits the cultivation of Vitis vinifera grape cultivars in California, across the southern United States and into South America. Resistance has been well characterized in V. arizonica, and one resistance locus has been identified (PdR1). However, resistance is poorly characterized in most other grape species. We tested a wide range of Vitis species from the southwestern United States for resistance to PD and used nuclear and chloroplast markers to phenotypically and genetically select a diverse set of resistant accessions. Chloroplast SSR markers identified 11 maternal lineage lines within the set of 17 (14 new and three previously identified) PD resistant accessions. A total of 19 breeding populations (F1 and pseudo-BC1) were developed with the 14 PD resistant accessions, and a total of 705 seedlings were analyzed for PD resistance. Using a limited mapping approach, 12 SSR markers, linked to the PdR1 locus, were used to genotype the breeding populations and phenotypic data were analyzed. Nine accessions had a major resistance quantitative trait locus (QTL) within the genomic region containing PdR1. The phenotypic data for these three resistant accessions, ANU67, b41-13, and T03-16, did not associate with PdR1 linked markers, indicating that their resistance is located in other regions of the genome. These three accessions were identified as candidates for use in the development of framework maps with larger populations capable of detecting additional and unique loci for PD resistance breeding and the stacking of PD resistance genes.
Pierce’s disease (PD) caused by the bacterium Xylella fastidiosa is a deadly disease of grapevines. This study used 20 SSR markers to genotype 326 accessions of grape species collected from the southeastern and southwestern United States, Mexico and Costa Rica. Two hundred sixty-six of these accessions, and an additional 12 PD resistant hybrid cultivars developed from southeastern US grape species, were evaluated for PD resistance. Disease resistance was evaluated by quantifying the level of bacteria in stems and measuring PD symptoms on the canes and leaves. Both Bayesian clustering and principal coordinate analyses identified two groups with an east-west divide: group 1 consisted of grape species from the southeastern US and Mexico, and group 2 consisted of accessions collected from the southwestern US and Mexico. The Sierra Madre Oriental mountain range appeared to be a phylogeographic barrier. The state of Texas was identified as a potential hybridization zone. The hierarchal STRUCTURE analysis on each group showed clustering of unique grape species. An east-west divide was also observed for PD resistance. With the exception of Vitis candicans and V. cinerea accessions collected from Mexico, all other grape species as well as the resistant southeastern hybrid cultivars were susceptible to the disease. Southwestern US grape accessions from drier desert regions showed stronger resistance to the disease. Strong PD resistance was observed within three distinct genetic clusters of V. arizonica which is adapted to drier environments and hybridizes freely with other species across its wide range.
This is the first report evaluating the genetic diversity of Mexican grape species utilizing DNA-based markers to understand the distribution of grape species, and patterns of hybridization. The study utilized accessions maintained in three collections in Mexico, one in the USA and recently collected germplasm. Fifteen SSR markers were used to develop a fingerprint database to identify unique germplasm. Two different clustering analyses without prior population assignment, were used to identify groups that were verified by a Discriminant Analysis of Principal Components and a Principal Coordinate Analysis. Genetic diversity estimates were made across and within groups to validate the results obtained from the clustering analyses. Multiple clustering analyses and diversity parameters supported six genetic groups representing different geographic regions. The Northeastern group was the most diverse with a geographic range extending to Eastern and Central Mexico, while the Coahuila group was the least diverse. Vitis arizonica Engelm. and Vitis cinerea Engelm. ex Millardet were the most abundant species with many hybrid forms. We provide evidence that wild grape species in Mexico follow the physical barriers of mountain ranges like the Sierra Madre Oriental with an east–west divide and the Trans-Mexican Volcanic Belt as a corridor for gene flow among different grape species. Additional collections are required to fully understand the extent of hybridization and to clarify hybrid zones.
This is the first report evaluating the genetic diversity of Mexican grape species utilizing DNA-based markers to understand the distribution of grape species and patterns of hybridization. The study utilized accessions maintained in three collections in Mexico, one in the USA and recently collected germplasm. Fifteen SSR markers were used to develop a fingerprint database to identify unique germplasm. Two different clustering analyses without prior population assignment, were used to identify groups that were verified by a Discriminant Analysis of Principal Components and a Principal Coordinate Analysis. Genetic diversity estimates were made across and within groups to validate the results obtained from the clustering analyses. Multiple clustering analyses and diversity parameters supported six genetic groups representing different geographic regions. The Northeastern group was the most diverse with a geographic range extending to Eastern and Central Mexico, while the Coahuila group was the least diverse. Vitis arizonica Engelm. and V. cinerea Engelm. ex Millardet were the most abundant species with many hybrid forms. We provide evidence that wild grape species in Mexico follow the physical barriers of mountain ranges like the Sierra Madre Oriental with an east-west divide and the Trans-Mexican Volcanic Belt as a corridor for gene flow among different grape species. Additional collections are required to fully understand the extent of hybridization and to clarify hybrid zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.