BackgroundDocosahexaenoic acid (DHA) is a natural compound with anticancer and anti-angiogenesis activity that is currently under investigation as both a preventative agent and an adjuvant to breast cancer therapy. However, the precise mechanisms of DHA’s anticancer activities are unclear. It is understood that the intercommunication between cancer cells and their microenvironment is essential to tumor angiogenesis. Exosomes are extracellular vesicles that are important mediators of intercellular communication and play a role in promoting angiogenesis. However, very little is known about the contribution of breast cancer exosomes to tumor angiogenesis or whether exosomes can mediate DHA’s anticancer action.ResultsExosomes were collected from MCF7 and MDA-MB-231 breast cancer cells after treatment with DHA. We observed an increase in exosome secretion and exosome microRNA contents from the DHA-treated cells. The expression of 83 microRNAs in the MCF7 exosomes was altered by DHA (>2-fold). The most abundant exosome microRNAs (let-7a, miR-23b, miR-27a/b, miR-21, let-7, and miR-320b) are known to have anti-cancer and/or anti-angiogenic activity. These microRNAs were also increased by DHA treatment in the exosomes from other breast cancer lines (MDA-MB-231, ZR751 and BT20), but not in exosomes from normal breast cells (MCF10A). When DHA-treated MCF7 cells were co-cultured with or their exosomes were directly applied to endothelial cell cultures, we observed an increase in the expression of these microRNAs in the endothelial cells. Furthermore, overexpression of miR-23b and miR-320b in endothelial cells decreased the expression of their pro-angiogenic target genes (PLAU, AMOTL1, NRP1 and ETS2) and significantly inhibited tube formation by endothelial cells, suggesting that the microRNAs transferred by exosomes mediate DHA’s anti-angiogenic action. These effects could be reversed by knockdown of the Rab GTPase, Rab27A, which controls exosome release.ConclusionsWe conclude that DHA alters breast cancer exosome secretion and microRNA contents, which leads to the inhibition of angiogenesis. Our data demonstrate that breast cancer exosome signaling can be targeted to inhibit tumor angiogenesis and provide new insight into DHA’s anticancer action, further supporting its use in cancer therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-015-0400-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.