Peroxynitrite (PN), a very reactive oxidant formed by the combination of superoxide and nitric oxide, appears to play a role in producing tissue damage in a number of inflammatory conditions. Pharmacological scavenging and decomposition of PN within these areas has therapeutic value in several tissue injury models. Recently, we have been interested in nitroxide free radical-containing compounds as possible scavengers of PN decomposition products. Nitroxides can undergo redox reactions to the corresponding hydroxylamine anion or oxoammonium cation in biological systems as shown by its ability to react with superoxide, leading to the formation of hydrogen peroxide and molecular oxygen. We found that 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) inhibits PN-mediated nitration of phenolic compounds in the presence of a large molar excess of PN, suggesting a catalytic-like mechanism. In these experiments, Tempol inhibited PN-mediated nitration over the pH range of 6.5-8.5. This inhibition was specific for nitration and had no effect on hydroxylation. After the inhibition of PN-mediated nitration, Tempol was recovered from the reaction mixtures unmodified. In addition, Tempol was effective in protecting PC-12 cells from death induced by SIN-1, a PN-generating compound. The exact mechanism of Tempol's interaction with PN is not clear; however, we propose that an intermediate in this reaction may be a nitrogen dioxide radical-Tempol complex. This complex could react with water to form either nitrite or nitrate, or with a phenol radical to produce nitrophenol or nitrosophenol products and regenerate the nitroxide.
β‐Amyloid (Aβ) peptides are a key component of the senile plaques that characterize Alzheimer's disease. Cytokine‐producing microglia have been shown to be intimately associated with amyloid deposits and have also been implicated as scavengers responsible for clearing Aβ deposits. However, little is known about the initial activation of these microglia or the effect of Aβ on phagocytosis. Murine BV‐2 microglia were used to assess the effect of synthetic Aβ 1–42 on phagocytosis by quantifying uptake of fluorescent microspheres, acetylated low‐density lipoproteins, and zymosan particles by flow cytometry. Aβ 1–42 stimulated microglial phagocytosis in a time‐ and dose‐dependent manner. Aβ fibrils produced the greatest potentiation, and once activated, phagocytosis remained elevated after removal of Aβ from the cultures. Aβ‐stimulated phagocytosis could be blocked if proteoglycans were first complexed to Aβ fibrils. These data suggest that Aβ fibrils act as an immune signal to stimulate microglial phagocytosis and that extracellular matrix molecules may modify Aβ function.
Mixed-lineage kinase 1 (MLK1) is a mitogen-activated protein kinase kinase kinase capable of activating the c-Jun NH(2)-terminal kinase (JNK) pathway. Full-length MLK1 has 1104 amino acids and a domain structure identical to MLK2 and MLK3. Immunoblot and mass spectrometry show that MLK1 is threonine (and possibly serine) phosphorylated in or near the activation loop. A kinase-dead mutant is not, consistent with autophosphorylation. Mutation to alanine of any of the four serine or threonine residues in the activation loop reduces both the activity of the recombinant kinase domain and JNK pathway activation driven by full-length MLK1 expressed in mammalian cells. Furthermore, the gel mobility of the mutant MLK1s is closer to that of the kinase-dead than wild type, consistent with reduced phosphorylation. Thr312 is the key residue: MLK1[T312A] retains only basal activity (about 1-2% of wild type), and its gel mobility is indistinguishable from kinase-dead. Thr312 does not suffice, however; phosphorylation of multiple sites is necessary for full activation of MLK1. An activation mechanism consistent with these data involves phosphorylation of multiple sites in the activation loop, with phosphorylation of Thr312 required for full phosphorylation. This mechanism is broadly similar to that previously reported for MLK3 [Leung, I. W., and Lassam, N. (2001) J. Biol. Chem. 276, 1961-1967], but the key residue differs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.