Discrepancies in the published research as to the attraction of the economically important pest western flower thrips (WFT) to different colours confounds the optimisation of field traps for pest management purposes. We considered whether the different experimental conditions of independent studies could have contributed to this. Therefore, the behavioural response (i.e., landings) to different colour cues of two WFT laboratory populations from Germany (DE) and The Netherlands (NL), which had previously been independently shown to have different colour preferences, were tested in the same place, and under the same experimental conditions. Single-choice wind tunnel bioassays supported previous independent findings, with more of a NL population landing on the yellow LED lamp (588 nm) than the blue (470 nm) (p = 0.022), and a not-statistically significant trend observed in a DE population landing more on blue compared to yellow (p = 0.104). To account for potential original host rearing influences, both populations were subsequently established on bean for ~20 weeks, then yellow chrysanthemum for 4–8 and 12–14 weeks and tested in wind tunnel choice bioassays. Laboratory of origin, irrespective of the host plant rearing regime, remained a significant effect (p < 0.001), with 65% of the NL WFT landing on yellow compared to blue (35%), while 66% of the DE WFT landed on blue compared to yellow (34%). There was also a significant host plant effect (p < 0.001), with increased response to yellow independent of laboratory of origin after rearing on chrysanthemum for 12–14 weeks. Results suggest that differing responses of WFT populations to colour is, in this case, independent of the experimental situation. Long-term separate isolation from the wild cannot be excluded as a cause, and the implications of this for optimising the trap colour is discussed.
Insects are an astonishingly successful and diverse group, occupying the gamut of habitats and lifestyle niches. They represent the vast majority of described species and total terrestrial animal biomass on the planet. Their success is in part owed to their sophisticated visual systems, including colour vision, which drive a variety of complex behaviours. However, the majority of research on insect vision has focused on only a few model organisms including flies, honeybees and butterflies. Especially understudied are phytophagous insects, such as diminutive thrips (Thysanoptera), in spite of their damage to agriculture. Thrips display robust yet variable colour-specific responses despite their miniaturized eyes, but little is known about the physiological and ecological basis of their visual systems. Here, we review the known visual behavioural information about thrips and the few physiological studies regarding their eyes. Eye structure, spectral sensitivity, opsin genes and the presence of putative colour filters in certain ommatidia strongly imply dynamic visual capabilities. Finally, we discuss the major gaps in knowledge that remain for a better understanding of the visual system of thrips and why bridging these gaps is important for expanding new possibilities for applied pest management strategies for these tiny insects. This article is part of the theme issue ‘Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.