Abstract. This article discusses modern techniques for nonuniform sampling and reconstruction of functions in shift-invariant spaces. It is a survey as well as a research paper and provides a unified framework for uniform and nonuniform sampling and reconstruction in shiftinvariant spaces by bringing together wavelet theory, frame theory, reproducing kernel Hilbert spaces, approximation theory, amalgam spaces, and sampling. Inspired by applications taken from communication, astronomy, and medicine, the following aspects will be emphasized: (a) The sampling problem is well defined within the setting of shift-invariant spaces. (b) The general theory works in arbitrary dimension and for a broad class of generators. (c) The reconstruction of a function from any sufficiently dense nonuniform sampling set is obtained by efficient iterative algorithms. These algorithms converge geometrically and are robust in the presence of noise. (d) To model the natural decay conditions of real signals and images, the sampling theory is developed in weighted L p -spaces.
Abstract. The theory of frames and non-orthogonal series expansions with respect to coherent states is extended to a general class of spaces, the so-called coorbit spaces. Special cases include wavelet expansions for the Besov-Triebel-Lizorkin spaces, Gabortype expansions for modulation spaces, and sampling theorems for wavelet and Gabor transforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.