Arctic environments experience rapid climatic changes as air temperatures are rising and precipitation is increasing. Rivers are key elements in these regions since they drain vast land areas and thereby reflect various climatic signals. Zackenberg River in northeast Greenland provides a unique opportunity to study climatic influences on discharge, as the river is not connected to the Greenland ice sheet. The study aims to explain discharge patterns between 1996 and 2019 and analyse the discharge for correlations to variations in air temperature and both solid and liquid precipitation. The results reveal no trend in the annual discharge. A lengthening of the discharge period is characterised by a later freeze-up and extreme discharge peaks are observed almost yearly between 2005 and 2017. A positive correlation exists between the length of the discharge period and the Thawing Degree Days (r=0.52,p<0.01), and between the total annual discharge and the annual maximum snow depth (r=0.48,p=0.02). Thereby, snowmelt provides the main source of discharge in the first part of the runoff season. However, the influence of precipitation on discharge could not be fully identified, because of uncertainties in the data and possible delays in the hydrological system. This calls for further studies on the relationship between discharge and precipitation. The discharge patterns are also influenced by meltwater from the A.P. Olsen ice cap and an adjacent glacier-dammed lake which releases outburst floods. Hence, this mixed hydrological regime causes different relationships between the discharge and climatic trends when compared to most Arctic rivers.
<p>The prospect of future sea level rise due to the melting of Antarctica and Greenland affirms an urgency to better understand the deglaciation dynamics of ephemeral ice sheets. The history and dynamics of Fennoscandian Ice Sheet retreat, reconstructed from glacial geomorphology, can serve as a useful analogue. The recent release of a 1 m LiDAR-derived national elevation model for Sweden reveals new insights, even for well-studied areas such as the Tornetra&#776;sk region of northwestern Sweden. This study aims to refine the history of retreat and dynamics of the ice sheet margin during deglaciation based on glacial geomorphological mapping. The mapped glacial landforms are, by means of an inversion model, grouped in swarms representing spatially and temporally coherent ice sheet flow systems. Ice-dammed lake traces such as raised shorelines, perched deltas, and outlet channels, allow for the precise identification of ice margins. A strong topographic control on retreat patterns is evident, from ice sheet disintegration into separate lobes in the mountains to orderly retreat in the low-relief areas. Eight ice-dammed lake stages are identified for the Tornetra&#776;sk basin, of which the lowest stages demonstrate the lake covered a larger extent than previously thought. The lake finally drains through Tornedalen by means of a glacial lake outburst flood. The P&#228;rvie fault, the longest-known glacially-induced fault in the world, offsets the six oldest raised shorelines of Tornetr&#228;sk. The implication of this new finding is that the P&#228;rvie fault ruptured partially underneath the ice sheet in response to glacial isostatic adjustment to the unloading of the crust. Precise dating of the two bracketing raised shorelines would pinpoint the age of the Pa&#776;rvie fault. Collectively, this study provides data for better understanding the history and dynamics of the Fennoscandian Ice Sheet during final retreat, such as interactions with ice-dammed lakes and re-activation of faults through glacial isostatic adjustment.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.