Background: In dentistry, antibacterial photodynamic therapy (a-PDT) has shown promising results for inactivating bacterial biofilms causing carious, endodontic and periodontal diseases. In the current study, we assessed the ability of eosin Y exposed to 3 irradiation protocols at inactivating Enterococcus faecalis biofilms, in vitro. Methods: E. faecalis biofilms formed on hydroxyapatite disks were incubated with eosin Y (10-80 M), then activated with blue light using different irradiation protocols. Biofilms exposed to continuous exposure were incubated for 40 min before being light-activated for 960 s. For the intermittent exposure, biofilms were exposed 4 times to the light/photosensitizer combination (960 s total) without renewing the photosensitizer. For repeated a-PDT, the same light dose was delivered in a series of 4 irradiation periods separated by dark periods; fresh photosensitizer was added between each light irradiation. After treatment, bacteria were immediately labeled with LIVE/DEAD BacLight Bacterial Viability kit and viability was assessed by flow cytometry (FCM). Results were statistically analyzed using one-way ANOVA and Tukey multiple comparison intervals (˛= 0.05). * Corresponding author.
Results:The viability of E. faecalis biofilms exposed to 10 M eosin Y, was significantly reduced compared to controls (light only-eosin Y only). After a second exposure to blue light-activated eosin Y, viability significantly decreased from 58% to 12% whereas 6.5% of the bacterial biofilm remained live after a third exposure (p < 0.05). Only 3.5% of the bacterial population survived after the fourth exposure.
Conclusions:The results of this study indicate that blue light-activated eosin Y can photoinactivate E. faecalis biofilms grown on hydroxyapatite disks. Also, repeated exposures to blue light-activated eosin Y were shown to significantly improve efficacy. Further studies seem warranted to optimize the antibacterial activity of blue light-activated eosin Y on major oral pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.