Photocharging of graphitic carbon nitrides (g-CN) is a process of electrons and charge-compensating cations accumulation in the material that is triggered by irradiating a mixture of the semiconductor and an electron donor with light. Although this process has been applied in sensing, energy storage and organic synthesis, the energetics of g-CN discharging has not been studied in details. Herein, we investigate transfer of e‒/H+ from g-CN photocharged with electrons and either protons (H+) or ammonium cations (NH4+) to an oxidant, such as O2 and imine. NH4+ exerts a strong stabilizing effect, which makes e‒/H+ transfer uphill. Especially in aqueous environment, NH4+ yields air-stable photocharged sodium poly(heptazine imide). In mildly-reduced g-CN, H+ do not stabilize electrons, which results in spontaneous transfer of e‒/H+ to oxidants. Facile transfer of e‒/H+ is a key step in a photocatalytic oxidative-reductive cascade – tetramerization of benzylic amines, which involves two photocatalytic events: i) oxidation of two benzylic amine molecules to the imine with a concomitant storage of 2e‒/2H+ in g-CN and ii) reduction of the imine to α-aminoalkyl radical that involves 1e‒/1H+ transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.