In this paper, we have proposed a novel methodology based on statistical features and different machine learning algorithms. The proposed model can be divided into three main stages, namely, preprocessing, feature extraction, and classification. In the preprocessing stage, the median filter has been used in order to remove salt-and-pepper noise because MRI images are normally affected by this type of noise, the grayscale images are also converted to RGB images in this stage. In the preprocessing stage, the histogram equalization has also been used to enhance the quality of each RGB channel. In the feature extraction stage, the three channels, namely, red, green, and blue, are extracted from the RGB images and statistical measures, namely, mean, variance, skewness, kurtosis, entropy, energy, contrast, homogeneity, and correlation, are calculated for each channel; hence, a total of 27 features, 9 for each channel, are extracted from an RGB image. After the feature extraction stage, different machine learning algorithms, such as artificial neural network, k -nearest neighbors’ algorithm, decision tree, and Naïve Bayes classifiers, have been applied in the classification stage on the features extracted in the feature extraction stage. We recorded the results with all these algorithms and found that the decision tree results are better as compared to the other classification algorithms which are applied on these features. Hence, we have considered decision tree for further processing. We have also compared the results of the proposed method with some well-known algorithms in terms of simplicity and accuracy; it was noted that the proposed method outshines the existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.