Carbon fiber bicycle wheels were tested under low velocity impact to monitor the damage evolution of the impact event. A wheel model designed by KQS Inc. (industrial partner) with eight different configurations, including spoke tension, number of spokes, and location of impact on the rim were investigated. IR thermography combined with PCA was used to monitor the damage during impact. Results showed that wheels in line with spokes had 16% higher impact energy absorption compared to those impacted in between spokes on average (58.9 J vs 70.2 J). The 20 spoked wheels had a slightly higher (6%) impact energy absorption than the 24 spoked wheels. The added stiffness due to the extra spokes reduced the impact energy absorption of rim. Wheels with higher spoke tension also had slightly improved impact energy absorption (4%). The test protocol established in this study provides a good understanding of the wheel’s impact damage evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.