Using novel in vitro preparations of vascularly perfused rat ileum, we investigated mesenteric afferent sensitivity to vascular perfusion. Gut (GPP) and vascular (VPP) perfusion pressures were recorded simultaneously with afferent discharge (AD). After preconstriction (L-phenylephrine), capsaicin (100 microM, gut lumen) caused a transient increase in AD and a sustained fall in VPP, supporting afferent modulation of vascular tone. In turn, AD was affected by vascular perfusion rate (VPR). Increasing VPR step-wise (0.6 to 1.0, 1.4 and 1.8 ml/min) caused concomitant falls in AD, returning at 0.6 ml/min. Terminating flow (5 min) increased AD. Afferent responses were independent of changes in GPP, vascular O2, or the gut "tube" ("gut-off"). In gut-off studies, where capsaicin (100 nM ia) still reduced VPP, flow-associated falls in AD were abolished by the enzyme neuraminidase (0.2 U/ml ia or extravascularly over 20 min). In contrast, increased AD after stopped flow was unaffected. We propose that mesenteric afferents "sense" changes in vascular perfusion. The precise stimuli (pressure and/or flow) and the physiological relevance to control of local circulation remain to be determined.
Spinal afferent neurons, with endings in the intestinal mesenteries, have been shown to respond to changes in vascular perfusion rates. The mechanisms underlying this sensitivity were investigated in an in vitro preparation of the mesenteric fan devoid of connections with the gut wall. Afferent discharge increased when vascular perfusion was stopped ("flow off"), a response localized to the terminal vessels just prior to where they entered the gut wall. The flow-off response was compared following pharmacological manipulations designed to determine direct mechanical activation from indirect mechanisms via the vascular endothelium or muscle. Under Ca(2+)-free conditions, responses to flow off were significantly augmented. In contrast, the myosin light chain kinase inhibitor wortmannin (1 microM, 20 min) did not affect the flow-off response despite blocking the vasoconstriction evoked by 10 microM l-phenylephrine. This ruled out active tension, generated by vascular smooth muscle, in the response to flow off. Passive changes caused by vessel collapse during flow off were speculated to affect sensory nerve terminals directly. The flow-off response was not affected by the N-, P-, and Q-type Ca(2+) channel blocker omega-conotoxin MVIIC (1 muM intra-arterially) or the P2X receptor/ion channel blocker PPADS (50 microM). However, ruthenium red (50 microM), a blocker of nonselective cation channels, greatly reduced the flow-off response and also abolished the vasodilator response to capsaicin. Our data support the concept that mesenteric afferents sense changes in vascular flow during flow off through direct mechanisms, possibly involving nonselective cation channels. Passive distortion in the fan, caused by changes in blood flow, may represent a natural stimulus for these afferents in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.