Desert sand dunes rarely occur in isolation, but usually form vast dune fields. The large-scale dynamics of these fields is hitherto poorly understood, not least due to the lack of long-time observations. Theoretical models usually abstract dunes in a field as self-propelled autonomous agents, exchanging mass, either remotely or as a consequence of collisions. In contrast to the spirit of these models, here we present experimental evidence that aqueous dunes interact over large distances without the necessity of exchanging mass. Interactions are mediated by turbulent structures forming in the wake of a dune, and lead to dune-dune repulsion, which can prevent collisions. We conjecture that a similar mechanism may be present in wind-driven dunes, potentially explaining the observed robust stability of dune fields in different environments.
We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios.
Fluid flow over an initially flat granular bed leads to the formation of a surface‐wave instability. The sediment bed profile coarsens and increases in amplitude and wavelength as disturbances develop from ripples into dunes. We perform experiments and numerical simulations to quantify both the temporal evolution of bed properties and the relationship between the initial growth rate and the friction velocity u∗. Experimentally, we study underwater bedforms originating from a thin horizontal particle layer in a narrow and counter‐rotating annular flume. We investigate the role of flow speed, flow depth and initial bed thickness on dune evolution. Bedforms evolve from small, irregular disturbances on the bed surface to rapidly growing connected terraces (2D equivalent of transverse dunes) before splitting into discrete dunes. Throughout much of this process, growth is controlled by dune collisions which are observed to result in either coalescence or ejection (mass exchange). We quantify the coarsening process by tracking the temporal evolution of the bed amplitude and wavelength. Additionally, we perform Large Eddy Simulations (LES) of the fluid flow inside the flume to relate the experimental conditions to u∗. By combining the experimental observations with the LES results, we find that the initial dune growth rate scales approximately as u∗5 ${u}_{\ast }^{5}$. These results can motivate models of finite‐amplitude dune growth from thin sediment layers that are important in both natural and industrial settings.
Sand dunes, which arise spontaneously due to the dynamical interplay between a sedimentary interface and a fluid flow, are one of the most famous examples of emergence in a geological system. The large scale organisation of a dune field is believed to be controlled by pairwise (either remote or direct) dune-dune interactions. Recent studies have shown that remote long-range feedback is closely related to the turbulent wake structure forming downstream of a dune. Here we study the stability of an idealised two-dune system arising as a consequence of such remote, wake-induced interactions. The system is realised in a subaqueous quasi-2D laboratory experiment and the results are compared with a qualitative dynamical systems model. Despite its simplicity, the system exhibits rich dynamical behaviour. In particular we show that, depending on the parameter regime, the dune-dune feedback can either stabilise or destabilise the symmetric dune configuration, and we demonstrate the existence of an asymmetric attracting state coupling dunes of different sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.