The aim of the study was to develop a new FEM (finite element method) model of a mandible with the temporal joint, which can be used in the numerical verification of the work of bonding elements used in surgical operations of patients with mandibular fractures or defects. Most of such types of numerical models are dedicated to a specific case. The authors engaged themselves in building a model that can be relatively easily adapted to various types of tasks, allowing to assess stiffness, strength and durability of the bonded fragments, taking into account operational loads and fatigue limit that vary in time. The source of data constituting the basis for the construction of the model were DICOM (digital imaging and communications in medicine) files from medical imaging using computed tomography. On their basis, using the 3D Slicer program and algorithms based on the Hounsfield scale, a 3D model was created in the STL (standard triangle language) format. A CAD (computer-aided design) model was created using VRMesh and SolidWorks. An FEM model was built using HyperWorks and Abaqus/CAE. Abaqus solver was used for FEM analyses. A model meeting the adopted assumptions was built. The verification was conducted by analyzing the influence of the simplifications of the temporomandibular joint in the assessment of mandibular strain. The work of an undamaged mandible and the work of the bonded fracture of the mandible were simulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.