For decades hormone therapy (HT) has been prescribed to treat the symptoms of menopause, such as vaginal dryness, itching and burning. Here we sought to compare the vaginal microbiomes of postmenopausal women who received low dose estrogen therapy to those of premenopausal and postmenopausal women, and to do so in conjunction with assessing the alleviation of symptoms associated with vaginal atrophy. In this study vaginal swab samples were obtained from 45 women who were classified as either premenopausal, postmenopausal, or postmenopausal and undergoing HT. The vaginal microbiomes of these women were characterized by 16S rRNA gene sequencing and bacterial abundances were quantified by qPCR. We found that the vaginal communities from our cohort could be divided into six clusters (A-F) based on differences in the composition and relative abundances of bacterial taxa. Communities in cluster A were dominated by Lactobacillus crispatus , and those of cluster B were dominated by Gardnerella vaginalis . Communities in cluster C had high proportions of L. iners , while those in cluster D were more even and included several co-dominant taxa. Communities in clusters E and F were dominated by Bifidobacterium and L. gasseri , respectively. The vaginal communities of most postmenopausal women receiving HT (10/15) were dominated by species of lactobacilli and belonged to clusters A, C, and F ( P < 0.001). This sharply contrasts with vaginal communities of postmenopausal women without HT, most of which (10/15) were in cluster D, depleted of lactobacilli, and had about 10-fold fewer total bacteria ( P < 0.05). The vaginal communities of women in each study group differed in terms of the dominant bacterial species composition and relative abundance. Those of postmenopausal women receiving HT significantly differed from those of postmenopausal women without HT and were most often dominated by species of Lactobacillus . Noteworthy, HT greatly improved vaginal atrophy scores, decreased vaginal pH, and significantly increased bacterial numbers in comparison to postmenopausal women not receiving HT.
Pregnancy permanently alters maternal anatomy, physiology and immunity. We evaluated if the vaginal microbiome differed between women with a first or subsequent conception. Relative abundance of bacteria in the vaginal microbiome in first trimester pregnant women, 52 with their first known conception, 26 with a prior spontaneous or induced abortion but no deliveries and 77 with at least one prior birth, was determined by classifying DNA sequences from the V1-V3 region of bacterial 16 S rRNA genes. Lactobacillus crispatus was the numerically most abundant bacterium in 76.4% of women with a first conception, 50.0% with only a prior spontaneous or scheduled abortion and 22.2% with a prior birth (p ≤ 0.01). L. iners was the most abundant bacterium in 3.8% of women with a first conception as compared to 19.2% (p = 0.03) and 20.8% (p = 0.03) in those with a prior abortion or birth, respectively. Gardnerella as the most abundant bacterial genus increased from 3.8% in women with a first conception to 15.4% and 14.3% in those with a prior abortion or birth, respectively (p > 0.05). L. iners dominance was also associated with a history of spontaneous abortion (p ≤ 0.02). The composition of the vaginal microbiome and its influence on pregnancy outcome varies with pregnancy history.
The emergence and spread of antibiotic resistance is a crisis in health care today. Antibiotic resistance is often horizontally transferred to susceptible bacteria by means of multi-drug resistance plasmids that may or may not persist in the absence of antibiotics. Because bacterial pathogens often grow as biofilms, there is a need to better understand the evolution of plasmid persistence in these environments. Here we compared the evolution of plasmid persistence in the pathogen Acinetobacter baumannii when grown under antibiotic selection in biofilms versus well-mixed liquid cultures. After four weeks, clones in which the plasmid was more stably maintained in the absence of antibiotic selection were present in both populations. On average plasmid persistence increased more in liquid batch cultures, but variation in the degree of persistence was greater among biofilm-derived clones. The results of this study show for the first time that the persistence of MDR plasmids improves in biofilms.
Substantial changes in the composition of the vaginal microbiome occur following the end of pregnancy. To identify potential drivers of microbiome changes in individual women during the pregnancy to postpartum transition, we evaluated vaginal samples from 48 pregnant women during their first and third trimesters and postpartum. We determined the species composition of vaginal communities and the vaginal fluid levels of compounds involved in mediating changes in host physiology and the immune system at each time point. We used linear mixed-effects models to characterize associations. Consistent with previous reports, but with a larger sample size, a US population, and variations in the dominant bacteria, the vaginal microbiome was found to be more diverse during the postpartum period. There was a lower abundance of Lactobacillus and significantly higher proportions of Streptococcus anginosus and Prevotella bivia. Moreover, we uniquely demonstrated that postpartum vaginal secretions were also altered postpartum. There were elevated levels of hyaluronan and Hsp70 and decreased levels of the D- and L-lactic acid isomers. We posit that these variations are consequences of alterations in the vagina after delivery that profoundly alter the host environment and, thus, lead to changes in the capability of different bacterial species to survive and proliferate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.