The oxidative dearomatization of phenols with the addition of nucleophiles to the aromatic ring induced by hypervalent iodine(III) reagents and catalysts has emerged as a highly useful synthetic approach. However, experimental mechanistic studies of this important process have been extremely scarce. In this report, we describe systematic investigations of the dearomatizing hydroxylation of phenols using an array of experimental techniques. Kinetics, EPR spectroscopy, and reactions with radical probes demonstrate that the transformation proceeds by a radical‐chain mechanism, with a phenoxyl radical being the key chain‐carrying intermediate. Moreover, UV and NMR spectroscopy, high‐resolution mass spectrometry, and cyclic voltammetry show that before reacting with the phenoxyl radical, the water molecule becomes activated by the interaction with the iodine(III) center, causing the Umpolung of this formally nucleophilic substrate. The radical‐chain mechanism allows the rationalization of all existing observations regarding the iodine(III)‐promoted oxidative dearomatization of phenols.
In the recent years, the dearomatization of phenols with the addition of nucleophiles to the aromatic ring, induced by hypervalent iodine(III) reagents and catalysts, has emerged as a highly useful synthetic approach. However, experimental mechanistic studies of this important process have been extremely scarce. As a result, the mechanism of the reaction remained elusive and as of today there exist as many as three distinct mechanistic proposals. In this report, we describe systematic investigations of the dearomatizing hydroxylation of phenols using an array of experimental techniques. Kinetics, EPR spectroscopy, and reactions with radical probes demonstrate that all the previously suggested mechanisms are incorrect, and that the transformation in fact proceeds via a radical-chain mechanism, with the aryloxyl radical being the key chain-carrying intermediate. Moreover, UV and NMR spectroscopy, high-resolution mass spectrometry, and cyclic voltammetry show that before reacting with the aryloxyl radical, water molecule becomes activated by the interaction with the iodine(III) center, causing this formally nucleophilic substrate to act as an electrophile. The C–O bond formation is identified as the rate-determining step of the reaction. This step generates the dearomatized product and an iodanyl(II) species, which is the second chain-carrying radical. The radical-chain mechanism emerging from our investigations allows to rationalize all other existing observations regarding the iodine(III)-promoted oxidative dearomatization of phenols.<br>
In the recent years, the dearomatization of phenols with the addition of nucleophiles to the aromatic ring, induced by hypervalent iodine(III) reagents and catalysts, has emerged as a highly useful synthetic approach. However, experimental mechanistic studies of this important process have been extremely scarce. As a result, the mechanism of the reaction remained elusive and as of today there exist as many as three distinct mechanistic proposals. In this report, we describe systematic investigations of the dearomatizing hydroxylation of phenols using an array of experimental techniques. Kinetics, EPR spectroscopy, and reactions with radical probes demonstrate that all the previously suggested mechanisms are incorrect, and that the transformation in fact proceeds via a radical-chain mechanism, with the aryloxyl radical being the key chain-carrying intermediate. Moreover, UV and NMR spectroscopy, high-resolution mass spectrometry, and cyclic voltammetry show that before reacting with the aryloxyl radical, water molecule becomes activated by the interaction with the iodine(III) center, causing this formally nucleophilic substrate to act as an electrophile. The C–O bond formation is identified as the rate-determining step of the reaction. This step generates the dearomatized product and an iodanyl(II) species, which is the second chain-carrying radical. The radical-chain mechanism emerging from our investigations allows to rationalize all other existing observations regarding the iodine(III)-promoted oxidative dearomatization of phenols.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.