In this paper we ask which properties of a distributed network can be computed from a few amount of local information provided by its nodes. The distributed model we consider is a restriction of the classical CON GEST (distributed) model and it is close to the simultaneous messages (communication complexity) model defined by Babai, Kimmel and Lokam. More precisely, each of these n nodes -which only knows its own ID and the IDs of its neighbors-is allowed to send a message of O(log n) bits to some central entity, called the referee. Is it possible for the referee to decide some basic structural properties of the network topology G? We show that simple questions like, "does G contain a square?", "does G contain a triangle?" or "Is the diameter of G at most 3?" cannot be solved in general. On the other hand, the referee can decode the messages in order to have full knowledge of G when G belongs to many graph classes such as planar graphs, bounded treewidth graphs and, more generally, bounded degeneracy graphs. We leave open questions related to the connectivity of arbitrary graphs.
International audienceThe Cops and Robbers game is played on undirected graphs where a group of cops tries to catch a robber. The game was defined independently by Winkler-Nowakowski and Quilliot in the 1980s and since that time has been studied intensively. Despite of that, its computation complexity is still an open question. In this paper we prove that computing the minimum number of cops that can catch a robber on a given graph is NP-hard. Also we show that the parameterized version of the problem is W[2]-hard. Our proof can be extended to the variant of the game where the robber can move s times faster than the cops. We also provide a number of algorithmic and complexity results on classes of chordal graphs and on graphs of bounded cliquewidth. For example, we show that when the velocity of the robber is twice the cop's velocity, the problem is NP-hard on split graphs, while it is polynomial time solvable on split graphs when players have the same speed. Also we establish that on graphs of bounded cliquewidth (this class of graphs contains, for example, graphs of bounded treewidth), the problem is solvable in polynomial time in the case the robber's speed is at most twice the speed of cops. Finally, we show that if the robber is faster than the cops then the minimum number of cops is unbounded for planar graphs
A set of autonomous robots have to collaborate in order to accomplish a common task in a ring-topology where neither nodes nor edges are labeled (that is, the ring is anonymous). We present a unified approach to solve three important problems: the exclusive perpetual exploration, the exclusive perpetual clearing, and the gathering problems. In the first problem, each robot aims at visiting each node infinitely often while avoiding that two robots occupy a same node (exclusivity property); in exclusive perpetual clearing (also known as searching), the team of robots aims at clearing the whole ring infinitely often (an edge is cleared if it is traversed by a robot or if both its endpoints are occupied); and in the gathering problem, all robots must eventually occupy the same node. We investigate these tasks in the Look-Compute-Move model where the robots cannot communicate but can perceive the positions of other robots. Each robot is equipped with visibility sensors and motion actuators, and it operates in asynchronous cycles. In each cycle, a robot takes a snapshot of the current global configuration (Look), then, based on the perceived configuration, takes a decision to stay idle or to move to one of its adjacent nodes (Compute), and in the latter case it eventually moves to this neighbor (Move). Moreover, robots are endowed with very weak capabilities. Namely, they are anonymous, asynchronous, oblivious, uniform (execute the same algorithm) and have no common sense of orientation. In this setting, we devise algorithms that, starting from an exclusive and rigid (i.e. aperiodic and asymmetric) configuration, solve the three above problems in anonymous ring-topologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.