As a renewable and biodegradable polymer, polylactide (PLA) has taken a foothold in the packaging industry. However, the thermomechanical and barrier properties of PLA-based films need to be improved to facilitate a wider adoption. To address this challenge, we examined the effect of talc reinforcement in composites based on PLA and a biodegradable polyester. Masterbatches of the polymers and talc were produced by melt compounding and processed by either injection-molding or film extrusion in a pilot-scale unit operating at 60-80 m/min. The effect of talc was investigated in relation to the morphological, thermal, mechanical, and barrier properties of the composites. Based on SEM-imaging, talc was found to increase the miscibility of PLA and the polyester while acting as a nucleating agent that improved PLA crystallinity. While this effect did not track with an increased mechanical strength, the composites with 3-4 wt% talc displayed a significantly higher barrier to water vapor. Compared to the neat polymer films, a reduction of water vapor transmission rate, by~34-37%, was observed at 23 C/50% RH. Meanwhile, the systems loaded with 1 wt% talc showed a reduction in oxygen transmission rates, by up to 34%. Our results highlight the challenges and prospects of commercial PLA-based blends filled with talc from films extruded in pilot-scale units.
We compared the performance of bio-based and biodegradable polymers for packaging applications. Cost-effective inorganic fillers (talc, kaolin and calcium carbonate) were first melt-compounded with polylactic acid (PLA), poly(butylene adipate-co-terephthalate) (PBAT) and poly(hydroxy butyrate-co-valerate) (PHBV). Following this, injection- and compression-molded specimens were produced to test the effect of filler loading (0–30 wt%) in relation to the morphological, thermal, mechanical and barrier properties of the composites. All the fillers were homogeneously dispersed in the polymer matrices and suitable polymer–filler adhesion was observed for talc and kaolin. The elastic modulus increased at the expense of a reduced tensile and elongation. The most significant improvements in water vapor and oxygen barrier properties were achieved with talc in PLA, PBAT and PHBV films. Overall, the results point to the promise of the introduced compositions for food packaging materials.
Barrier materials have an important role in various packaging applications, especially considering the requirements associated with protection and shelf life. Most barrier materials used in today’s industry are either manufactured from oil resources or metals. Driven by the increase in environmental awareness, access to oil resources as well as legislation, new and environmentally benign alternatives are at the center stage of scientific and industrial interest. This article covers the use of wood-derived polymers and those produced from microorganisms, which display remarkable barrier properties. Wood-based products have received great attention for their air/oxygen resistance. As far as their properties, microorganism-derived biopolymers are comparable to conventional oil-based thermoplastics, but their cost may still be an issue. Both, wood and microorganism-derived biopolymers are challenged when moisture, grease and oxygen resistance are simultaneously required. Hence, multilayer structures and composites are needed to fulfill the most demanding requirements of packaging materials. Here we offer a review of these topics together with a discussion of their prospects.
We study the incorporation of minerals (talc, kaolin and surface-treated calcium carbonate) in paperboard coatings based on PLA to improve their performance, often limited by the low crystallinity and moderate gas barrier of the polymer. Masterbatches of PLA-based blends mixed with the mineral fillers were melt-blended in a twin-screw extruder and applied as a coating on paperboard in a pilot-scale unit operating at velocities up to 140 m/min. Thermal imaging was used during the extrusion coating and the effect of the fillers was investigated as far as processability and their effect on the mechanical performance. A reduction of neck-in and improved adhesion between the coating and the substrate were achieved at intermediate mineral loadings. Excess filler and low coating weight generated pinholes, leading to a reduction of the integrity and mechanical properties of the coatings. Overall, we define the performance window for continuous, pilot-scale coating of paperboard with a biopolyester filled with mineral particles, opening the opportunity to realize operations in industrial settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.