The thermal stability of a series of dialkylimidazolium carboxylate ionic liquids has been investigated using a broad range of experimental and computational techniques. Ionic liquids incorporating fluoroalkyl carboxylate anions were found to have profoundly differing thermal stabilities and decomposition mechanisms compared with their non-fluorinated analogues. 1-Ethyl-3-methylimidazolium acetate was observed to largely decompose via an S(N)2 nucleophilic substitution reaction when under inert gas conditions, predominantly at the imidazolium methyl substituent. The Arrhenius equations for thermal decomposition of 1-ethyl-3-methylimidazolium acetate, and the C(2)-methylated analogue 1-ethyl-2,3-dimethylimidazolium acetate, were determined from isothermal Thermogravimetric Analysis experiments. The low thermal stability of 1-ethyl-3-methylimidazolium acetate has important implications for biomass experiments employing this ionic liquid. For these two ionic liquids, ion pair and transition state structures were optimised using Density Functional Theory. The activation barriers for the S(N)2 nucleophilic substitution mechanisms are in good agreement with the experimentally determined values.
Will microreactors replace the round-bottomed flask to perform chemical reactions in the near future? Recent developments in the construction of microstructured reaction devices and their wide-ranging applications in many different areas of chemistry suggest that they can have a significant impact on the way chemists conduct their experiments. Miniaturizing reactions offers many advantages for the synthetic organic chemist: high-throughput scanning of reaction conditions, precise control of reaction variables, the use of small quantities of reagents, increased safety parameters, and ready scale-up of synthetic procedures. A wide range of single- and multiphase reactions have now been performed in microfluidic-based devices. Certainly, microreactors cannot be applied to all chemistries yet and microfluidic systems also have disadvantages. Limited reaction-time range, high sensitivity to precipitating products, and new physical, chemical, and analytical challenges have to be overcome. This concept article presents an overview of microfluidic devices available for chemical synthesis and evaluates the potential of microreactor technology in organic synthesis.
Described is the combination of microreactors and fluorous phase chemistry to assemble oligosaccharides. The synthesis of a beta-(1-->6) linked D-glucopyranoside homotetramer serves to illustrate this approach. Glycosylations employing a Fmoc-protected glucosyl phosphate building block were performed in a silicon-based micro-structured device to optimize reaction conditions and for reaction scale-up. A perfluorinated linker at the reducing end of the oligosaccharides allowed for purification by fluorous solid-phase extraction (FSPE) and further functionalization.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.