Summary Background The precise mapping of multiple antibody epitopes recognized by patients’ sera allows a more detailed and differentiated understanding of immunological diseases. It may lead to the development of novel therapies and diagnostic tools. Objective Mapping soy bean specific epitopes relevant for soy bean allergy patients and persons sensitized to soy bean, and analysis of their IgE/IgG binding spectrum. Methods Identification of epitopes using sera, applying an optimized peptide phage display library followed by next‐generation sequencing, specially designed in silico data analysis and subsequent peptide microarray analysis. Results We were able to identify more than 400 potential epitope motifs in soy bean proteins. More than 60% of them have not yet been described as potential epitopes. Eighty‐three peptides, representing the 42 most frequently found epitope candidates, were validated by microarray analysis using 50 sera from people who have been tested positive in skin prick test (SPT). Of these peptides, 56 were bound by antibodies, 55 by serum IgE, 43 by serum IgG and 30 by both. Person‐specific epitope patterns were found for each individual and protein. Conclusions For individuals with clinical symptoms, epitope resolved analyses reveal a high prevalence of IgE binding to a few soy bean specific epitopes. Evaluation of individual immune profiles of patients with soy bean sensitization allows the identification of peptides that do facilitate studying individual IgE/IgG epitope binding patterns. This enables discrimination of sensitization from disease, such assay test has the potential to replace SPT assays
Detailed IgE-binding epitope analysis is a key requirement for the understanding and development of diagnostic and therapeutic agents to address food allergies. An IgE-specific linear peptide microarray with random phage peptide display for the high-resolution mapping of IgE-binding epitopes of the major soybean allergen Gly m 4, which is a homologue to the birch pollen allergen Bet v 1 is combined. Three epitopes are identified and mapped to a resolution of four key amino acids, allowing the rational design and the production of three Gly m 4 mutants with the aim to abolish or reduce the binding of epitope-specific IgE. In ELISA, the binding of the mutant allergens to polyclonal rabbit-anti Gly m 4 serum as well as IgE purified from Gly m 4-reactive soybean allergy patient sera is reduced by up to 63% compared to the wild-type allergen. Basophil stimulation experiments using RBL-SX38 cells loaded with patient IgE are showed a decreased stimulation from 25% for the wild-type Gly m 4 to 13% for one mutant. The presented approach demonstrates the feasibility of precise mapping of allergy-related IgE-binding epitopes, allowing the rational design of less allergenic mutants as potential therapeutic agents.
Combinations of enzymatic hydrolysis using different proteolytic enzymes (papain, Esperase®, trypsin) and lactic fermentation with Lactobacillus plantarum were used to alter potential pea allergens, the functional properties and sensory profile of pea protein isolate (PPI). The order in which the treatments were performed had a major impact on the changes in the properties of the pea protein isolate; the highest changes were seen with the combination of fermentation followed by enzymatic hydrolysis. SDS-PAGE, gel filtration, and ELISA results showed changes in the protein molecular weight and a reduced immunogenicity of treated samples. Treated samples showed significantly increased protein solubility at pH 4.5 (31.19–66.55%) and at pH 7.0 (47.37–74.95%), compared to the untreated PPI (6.98% and 40.26%, respectively). The foaming capacity was significantly increased (1190–2575%) compared to the untreated PPI (840%). The treated PPI showed reduced pea characteristic off-flavors, where only the treatment with Esperase® significantly increased the bitterness. The results from this study suggest that the combination of enzymatic hydrolysis and lactic fermentation is a promising method to be used in the food industry to produce pea protein ingredients with higher functionality and a highly neutral taste. A reduced detection signal of polyclonal rabbit anti-pea-antibodies against the processed protein preparations in ELISA furthermore might indicate a decreased immunological reaction after consumption.
Background: There are no diagnostic and/or prognostic markers of the treatment outcome in patients receiving allergen immunotherapy (AIT). Although numerous allergen epitopes are known, their value in this context has not been investigated. This paper deals with re-evaluation of sera from patients who underwent AIT against rBet v 1 for treatment of their soya allergy (BASALIT trial).Objective: To evaluate the diagnostic and/or prognostic potential of allergen epitopes recognition by antibodies from patients with birch-related soya allergy before and after rBet v 1-immunotherapy.Methods: PR-10 epitope-binding profiles from 34 patients were identified in silico using a statistical peptide phage display at start and at end of AIT. IgE-and IgG-binding to these peptide epitopes was measured in peptide microarrays. Clinical relevance of epitopes was evaluated by comparing these measurements to a number of treatment outcome measures recorded during double-blind placebo-controlled food challenge at start and end of AIT. Results:We showed that IgG-and IgE-recognition of peptide epitopes after AIT were surrogate markers of 5 out of 12 analysed treatment outcome measures using this patient cohort. Seven epitopes were identified from multiple PR-10 allergen sequences.Twenty-six peptide epitopes were used for IgG and IgE measurements. IgE-binding to one of the epitopes was associated with stronger intensity of oral tingling/itching after ingesting soya at start of AIT. IgG recognizing two other epitopes at start of AIT could predict decreased Cor a 1-specific IgE concentration (p = .043) and decreased lip swelling intensity (p = .016) after AIT. Tolerance to increasing amounts of soy at food challenge correlated with IgG-binding to another epitope at start of AIT (p = .046). Conclusion:IgG-and IgE-binding to peptide epitopes in PR-10 is a potential indicator of the outcome and clinical course of AIT of soya-sensitized patients with rBet v 1.
<b><i>Background:</i></b> In pollinosis patients, allergen-specific antibody titers show seasonal variations. Little is known about these variations at the epitope level. <b><i>Objectives:</i></b> We aimed at investigating seasonal variations on the level of allergen epitope recognition in patients with Bet v 1-related food allergy using a peptide phage display approach. <b><i>Methods:</i></b> Serum samples collected over 1 year from 4 patients of the placebo arm of the birch-associated soya allergy immunotherapy trial were included. To identify epitopes from Bet v 1-related food allergens, patient sera were used in peptide phage display experiments. In silico analysis of enriched allergen-related motifs was performed. <b><i>Results:</i></b> We identified epitope motifs related to Bet v 1 and its homologs in soya and hazelnut (Gly m 4 and Cor a 1, respectively) that were enriched in accordance with birch and hazel pollen exposure. Within several weeks after the birch pollen season peak, the pattern of identified epitope motifs differed considerably among patients. Data for amino acid preferences in homologous Bet v 1 and Cor a 1 epitope motifs identified for one of the investigated patients suggest changes in concentration or specificity of serum antibodies for the Cor a 1 epitope motif. <b><i>Conclusions:</i></b> Peptide phage display data suggest an impact of birch and hazel pollen exposure on the recognition pattern of Bet v 1-like allergen epitopes. Epitope-oriented analyses could provide deeper, personalized details regarding the allergen epitope recognition influenced by pollen exposure beyond the capability of current methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.