Interactions between light and various cells in cultures, such as bacteria or mammalian cells, are widely applied for optical sensors and optofluidic systems. These microorganisms need to be kept in proper aqueous media, referred to as buffers or cell culture media, that are required, respectively, for stable storage or delivering biochemical nutrients for their growth. When experiments or numerical analyses on optical devices are performed, the properties of these media are usually considered to be similar to those of pure water, with negligible influence of biochemical compounds on the medium’s optical properties. In this work, we investigated the transmission, material dispersion, and scattering properties of selected and widely used buffers and cell culture media. We show that the optical properties of these media may significantly vary from those of water. Well-defined properties of buffers and cell culture media are essential for proper design of various optical sensing or future optofluidic systems dealing with biological structures.
BackgroundmiRNAs control important cellular functions including angiogenesis/angiostasis or fibrosis and reveal altered expression during pathological processes in the lung.MethodsThe aim of the study was to investigate the expression of selected miRNAs (miR-let7f, miR-15b, miR-16, miR-20a, miR-27b, miR-128a, miR-130a, miR-192 miR-221, miR-222) in patients with pulmonary sarcoidosis (n = 94) and controls (n = 50). The expression was assessed by q-PCR in BALF cells and peripheral blood lymphocytes (PB lymphocytes). For statistical analysis, the Kruskal–Wallis test, Mann–Whitney U- test, Neuman–Keuls’ multiple comparison test, and Spearman’s rank correlation were used.ResultsIn BALF cells, significantly higher expression of miR-192 and miR-221 and lower expression of miR-15b were found in patients than controls. MiR-27b, miR-192 and miR-221 expression was significantly higher in patients without parenchymal involvement (stages I) than those at stages II-IV. Patients with acute disease demonstrated significantly higher miR-27b, miR-192 and miR-221 expression than those with insidious onset. For PB lymphocytes, patients demonstrated significantly greater miR-15b, miR-27b, miR-192, miR-221 and miR-222 expression, but lower miR-let7f and miR-130a expression, than controls. Stage I patients demonstrated significantly higher miR-16 and miR-15b expression than those in stages II-IV, and patients with the acute form demonstrated higher miR-130a and miR-15b expression. In BALF cells, miR-16 and miR-20a expression was significantly higher in patients with lung volume restriction, and miR-let7f was higher in the PB lymphocytes in patients with obturation. Several correlations were observed between the pattern of miRNA expression, lung function parameters and selected laboratory markers.ConclusionThe obtained results suggest that the studied miRNAs play a role in the pathogenesis of sarcoidosis, and that some of them might have negative prognostic value.Electronic supplementary materialThe online version of this article (doi:10.1186/s12881-016-0266-6) contains supplementary material, which is available to authorized users.
Despite therapeutic advances, lung cancer remains one of the most common causes of cancer-related death in the world. There is a need to develop biomarkers of diagnostic and/or prognostic value and to translate findings in basic science research to clinical application. Tumor suppressor genes (TSGs) represent potential useful markers for disease detection, progression and treatment target. We tried to elucidate the role of three 3p21.3 TSGs: DLEC1, ITGA9 and MLH1, in non-small cell lung cancer (NSCLC). We assessed their expression pattern by qPCR in 59 NSCLC tissues and in the matched macroscopically unchanged lung tissues. Additionally, we analyzed gene promoter methylation status by methylation-specific PCR in NSCLC samples. We did not find significant correlations between gene expression and methylation. In case of DLEC1 and ITGA9, expression levels were decreased in 71-78 % of tumor samples and significantly different between tumor and normal tissues (P = 0.0001). It could point to their diagnostic value. ITGA9 could also be regarded as a diagnostic marker differentiating NSCLC subtypes, as its expression level was significantly lower in squamous cell carcinoma (P = 0.001). The simultaneous down-regulation of DLEC1 and ITGA9 was observed in 52.5 % of NSCLCs. MSPs revealed high frequencies of gene promoter methylation in NSCLCs: 84 % for DLEC1 and MLH1 and 57 % for ITGA9. Methylation indexes reflected moderate gene methylation levels: 34 % for ITGA9, 27 % for MLH1 and 26 % for DLEC1. However, frequent simultaneous methylation of the studied genes in more than 50 % of NSCLCs suggests the possibility of consider them as a panel of epigenetic markers.
In the present study the role of tumour suppressor genes (TSGs) hypermethylation and genetic instability of LOH/MSI type in thyroid tumorigenesis was assessed. Expression, methylation status and presence of LOH/MSI were analyzed for 8 TSGs selected from imprinted (IR) and non-imprinted (NIR) chromosomal regions in papillary thyroid carcinomas (PTCs) and nodular goitres (NGs). The results show that methylation-induced gene silencing occurs at an early step of thyroid carcinogenesis and involves multiple genes. Genetic changes of LOH/MSI type are less frequent. In PTC samples, the lack of significant differences in the frequency of LOH in IR and NIR suggests that it is not a key mechanism changing the pattern of gene expression. Co-methylation observed both in NG and PTC raises a possibility that, in thyroid tissue, methylation-induced silencing may occur not only in malignant transformation but also in functional context. We did not recognize any of the studied TSGs - in regard to aberrant methylation status or LOH/MSI frequency - as a selective molecular marker in thyroid tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.