The paper aims to examine the possibility of adapting an existing school building to the standard of a zero energy building. The school building is a specific case of a building in which the energy consumption is periodic, except for the months with the most sunshine. Therefore, it is necessary to look for a solution that will allow storing the energy obtained, for example, from solar collectors. Based on the analysis of the literature, it was concluded that the use of borehole thermal energy storage might be the right solution to the problem. The article presents the energy balance of the building with and without the use of renewable energy sources and the benefits of using an energy storage system.
Introduction: There is a growing interest in the possibility of dietary supplementation with polyunsaturated fatty acids (PUFAs) for treatment and prevention of neurodevelopmental and neuropsychiatric disorders. Studies have suggested that of the two important classes of polyunsaturated fatty acids, omega-6 (n-6) and omega-3 (n-3), n-3 polyunsaturated fatty acids support brain development and function, and when used as a dietary supplement may have beneficial effects for maintenance of a healthy brain. However, to date epidemiological studies and clinical trials on children and adults have been inconclusive regarding treatment length, dosage and use of specific n-3 polyunsaturated fatty acids. The aim of this study is to generate a simplified in vitro cell-based model system to test how different n-6 to n-3 polyunsaturated fatty acids ratios affect human-derived neurons activity as a cellular correlate for brain function and to probe the mechanism of their action.Methods: All experiments were performed by use of human induced pluripotent stem cells (iPSCs). In this study, we examined the effect of different ratios of linoleic acid (n-6) to alpha-linolenic acid in cell growth medium on induced pluripotent stem cell proliferation, generation of neuronal precursors and electrophysiology of cortical glutamatergic neurons by multielectrode array (MEA) analysis.Results: This study shows that at a n-6:n-3 ratio of 5:1 polyunsaturated fatty acids induce stem cell proliferation, generating a large increase in number of cells after 72 h treatment; suppress generation of neuronal progenitor cells, as measured by decreased expression of FOXG1 and Nestin in neuronal precursor cells (NPC) after 20 days of development; and disrupt neuronal activity in vitro, increasing spontaneous neuronal firing, reducing synchronized bursting receptor subunits. We observed no significant differences for neuronal precursor cells treated with ratios 1:3 and 3:1, in comparison to 1:1 control ratio, but higher ratios of n-6 to n-3 polyunsaturated fatty acids adversely affect early stages of neuronal differentiation. Moreover, a 5:1 ratio in cortical glutamatergic neurons induce expression of GABA receptors which may explain the observed abnormal electrophysiological activity.
In this study, the idea of an energy self-sufficient public utility building was presented, as well as its energy balance components and the possibility of powering it with renewable sources. The annual energy consumption profile of the building was analyzed. Current data concerning the production of electricity from Renewable Energy Systems (RES) were presented. The applicable provisions of the Directive of the European Parliament and the EU Council on energy efficiency were discussed.
Sporadic Alzheimer's disease is the leading cause of dementia worldwide and the Apolipoprotein-E4 allele (APOE) is the strongest genetic risk factor but despite its importance, its role in disease pathogenesis is incompletely understood. The APOE gene encodes Apolipoprotein E (ApoE). Astrocytes are the main source of ApoE in the central nervous system (CNS) and are essential for homeostasis in health and disease. In response to CNS insult, a coordinated multicellular inflammatory response is triggered causing reactive astrogliosis with changes in astrocytic gene expression, cellular structure and function. Using a human embryonic stem-cell line with the neutral APOE33 genotype, we used CRISPR Cas-9 gene-editing technology to create isogenic APOE lines with an APOE44 genotype. We developed a modified protocol designed to produce quiescent astrocytes and then stimulated them to induce an astrogliotic A1 phenotype. Several potentially pathological APOE44-related phenotypes were identified in both quiescent cells and reactive A1 astrocytes including significantly decreased phagocytosis and impaired glutamate uptake in APOE44 astrocytes. There were also key differences in the inflammatory profiles of APOE33 and APOE44 astrocytes characterised by significantly decreased secretion of IL6, IL8 and several oxylipins in APOE44 quiescent astrocytes. In A1 astrocytes there was a pro-inflammatory phenotype in APOE44 astrocytes with increases in GRO, ENA78, IL6 and IL8, a decrease in IL10 as well as significant differences in oxylipin expression suggestive of a defect in their immunomodulatory function. As TNF-α induced signaling in astrocytes is driven by Nuclear factor kappa B (NF-κB) we investigated the proteins of this pathway and found significantly higher levels of the p65 and IκBα sub-units in both quiescent and A1 APOE44 astrocytes. This suggests that perturbation of NF-κB signaling may contribute to the damaging cell phenotypes that we observe and provides a new direction for targeted disease therapeutics. Given the large numbers of existing drugs that act on the NF-κB pathway, this could be realised in a relatively short timeframe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.