Recent studies strongly indicate that aberrations in the control of gene expression might contribute to the initiation and progression of Alzheimer's disease (AD). In particular, alternative splicing has been suggested to play a role in spontaneous cases of AD. Previous transcriptome profiling of AD models and patient samples using microarrays delivered conflicting results. This study provides, for the first time, transcriptomic analysis for distinct regions of the AD brain using RNA-Seq next-generation sequencing technology. Illumina RNA-Seq analysis was used to survey transcriptome profiles from total brain, frontal and temporal lobe of healthy and AD post-mortem tissue. We quantified gene expression levels, splicing isoforms and alternative transcript start sites. Gene Ontology term enrichment analysis revealed an overrepresentation of genes associated with a neuron's cytological structure and synapse function in AD brain samples. Analysis of the temporal lobe with the Cufflinks tool revealed that transcriptional isoforms of the apolipoprotein E gene, APOE-001, -002 and -005, are under the control of different promoters in normal and AD brain tissue. We also observed differing expression levels of APOE-001 and -002 splice variants in the AD temporal lobe. Our results indicate that alternative splicing and promoter usage of the APOE gene in AD brain tissue might reflect the progression of neurodegeneration.
Campylobacter concisus is an emerging pathogen of the human gastrointestinal tract. Its role in different diseases remains a subject of debate; this may be due to strain to strain genetic variation. Here, we sequence and analyze the genome of a C. concisus from a biopsy of a child with Crohn's disease (UNSWCD); the second such genome for this species. A 1.8 Mb genome was assembled with paired-end reads from a next-generation sequencer. This genome is smaller than the 2.1 Mb C. concisus reference BAA-1457. While 1593 genes were conserved across UNSWCD and BAA-1457, 138 genes from UNSWCD and 281 from BAA-1457 were unique when compared against the other. To further validate the genome assembly and annotation, comprehensive shotgun proteomics was performed. This confirmed 78% of open reading frames in UNSWCD and, importantly, provided evidence of expression for 217 proteins previously defined as ‘hypothetical’ in Campylobacter. Substantial functional differences were observed between the UNSWCD and the reference strain. Enrichment analysis revealed differences in membrane proteins, response to stimulus, molecular transport and electron carriers. Synteny maps for the 281 genes not present in UNSWCD identified seven functionally associated gene clusters. These included one associated with the CRISPR family and another which encoded multiple restriction endonucleases; these genes are all involved in resistance to phage attack. Many of the observed differences are consistent with UNSWCD having adapted to greater surface interaction with host cells, as opposed to BAA-1457 which may prefer a free-living environment.
BackgroundSeveral studies have shown that significant genotypic heterogeneity exists among Campylobacter concisus strains. Recently, the genome of C. concisus UNSWCD, isolated from a patient with Crohn's disease, was sequenced.ResultsIn this study, comparative analyses were performed between strain UNSWCD and BAA-1457, isolated from a patient with acute gastroenteritis. Searches between C. concisus UNSWCD and BAA-1457 showed that 76% of genes were homologues, whereas those between C. jejuni strains showed 90-91% to be homologues, indicating substantial variation exists within these two C. concisus genomes. More specific bidirectional homology searches identified 1593 genes that are shared between these strains, and 115 and 281 genes unique to UNSWCD and BAA-1457, respectively. Significantly, differences in the type of flagellin glycosylation pathways between the two strains were identified and confirmed by PCR. The protein profiles of UNSWCD, BAA-1457 and a further six strains of C. concisus were compared and analyzed bioinformatically, and this differentiated the strains into four clades. BAA-1457 was found to be highly divergent (average similarity: 56.8%) from the other seven strains (mean average similarity ± standard deviation: 64.7 ± 1.7%). Furthermore, searches for homologues of the 1593 proteins found to be common between UNSWCD and BAA-1457 were conducted against all available bacterial genomes, and 18 proteins were found to be unique to C. concisus, of which 6 were predicted to be secreted, and may represent good markers for detection of this species.ConclusionsThis study has elucidated several features that may be responsible for the heterogeneity that exists among C. concisus strains, and has determined that the strain BAA-1457 is genetically atypical to other C. concisus strains and is not a good candidate reference strain.
The kinesin-related protein (HSET) gene belongs to the kinesin superfamily, the members of which are involved in cellular transport processes. The HSET gene product was previously characterized by partial cDNA sequencing. The gene is located on the short arm of human Chromosome 6 (6p21.3), at the centromeric end of the major histocompatibility complex. Here, we report the genomic structure of the complete HSET gene together with its flanking loci. Sequence analysis of the 40 kilobase (kb) cosmid clone containing the HSET gene also revealed the presence of several new genes not related to the kinesin superfamily. These include a 60S ribosomal protein L35A-like pseudogene (rPL35A-like) on the telomeric side and a polycomb-like gene (PHF1), a copper tolerance-like gene (CUTA1) and the 5' part of the synaptic ras-GTPase-activating protein (SynGAP) gene centromeric of HSET. In addition, a complete 60S ribosomal protein L12-like (rPL12L) gene in intron 3 of the HSET gene was identified which appears to have an open reading frame. The possible involvement of the HSET gene and a beta-tubulin gene (TUBB) in the pathogenesis of immotile cilia syndrome (ICS) was studied by screening two unrelated ICS families with microtubular defects and suspected HLA linkage for mutations within the HSET gene and the TUBB gene. Four single base substitutions were detected in the HSET gene, and none in the TUBB gene. On the basis of these data, a role of the HSET and TUBB products in the pathogenesis of ICS in the two families is unlikely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.