Ectomycorrhizal exploration types are commonly assumed to denote spatial foraging patterns and resource-related niches of extraradical mycelia. However, empirical evidence of the consistency of foraging strategies within exploration types is lacking.Here, we analysed ectomycorrhizal foraging patterns by incubating root-excluding ingrowth mesh bags filled with six different substrates in mature Picea abies forests. Highthroughput sequencing was used to characterise ectomycorrhizal fungal communities in the mesh bags and on adjacent fine roots after one growing season.Contrary to expectations, many ectomycorrhizal genera of exploration types that are thought to produce little extraradical mycelium colonised ingrowth bags extensively, whereas genera commonly associated with ample mycelial production occurred sparsely in ingrowth bags relative to their abundance on roots.Previous assumptions about soil foraging patterns of exploration types do not seem to hold. Instead, we propose that variation in the proliferation of extraradical mycelium is related to intergeneric differences in mycelial longevity and the mobility of targeted resources.
Background and aims Forest management towards increased carbon (C) sequestration has repeatedly been suggested as a “natural climate solution”. We evaluated the potential of altered management to increase C sequestration in boreal Pinus sylvestris forest plantations. Methods At 29 forest sites, distributed along a 1300 km latitudinal gradient in Sweden, we studied interactive effects of fertilization and thinning on accumulation of C in standing biomass and the organic horizon over a 40 year period. Results Abstention from thinning increased the total C stock by 50% on average. The increase was significant (14% on average) even when C in the removed timber was included in the total ecosystem C pool. Fertilization of thinned stands increased stocks similarly regardless of including (11%) or excluding (12%) removed biomass, and fertilization combined with abstention from thinning had a synergistic effect on C stocks that generated an increase of 79% (35% when removed timber was included in the C stock). A positive effect of fertilization on C stocks was observed along the entire gradient but was greater in relative terms at high latitudes. Fertilization also reduced soil respiration rates. Conclusion Taken together, our results suggest that changed forest management practices have major potential to increase the C sink of boreal forests. Although promising, these benefits should be evaluated against the undesired effects that such management can have on economic revenue, timber quality, biodiversity and delivery of other ecosystem services.
Forest management has a potential to alter below‐ground carbon storage. However, the underlying mechanisms, and the relative importance of carbon input and decomposition in regulation of soil carbon dynamics are poorly understood. We examined whether interactive effects of forest fertilization and thinning on carbon stocks in the topsoil of boreal forests were linked to changes in fungal community composition, biomass and enzyme activities, in a long‐term fertilization and thinning experiment distributed across 29 Pinus sylvestris forests along a 1,300 km latitudinal transect in Sweden. Nitrogen fertilization increased fungal biomass, particularly towards the north and mainly by promoting root‐associated Ascomycetes, but the response was moderated by thinning. Fungal biomass correlated positively with carbon stocks in the organic topsoil. However, ectomycorrhizal Cortinarius species were reduced in abundance by fertilization and correlated negatively with carbon stocks. Plausibly, increased soil carbon stocks after fertilization are linked to increased input of carbon in the form of root‐associated mycelium combined with the loss of ectomycorrhizal decomposers within the genus Cortinarius. These fungal responses to fertilization may mediate a natural climate solution by promoting carbon sequestration in the organic topsoil, but the effect of fertilization may also be undesired from a biodiversity perspective. A free Plain Language Summary can be found within the Supporting Information of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.