Abstract. The paper examines the one-dimensional total variation flow equation with Dirichlet boundary conditions. Thanks to a new concept of "almost classical" solutions we are able to determine evolution of facets -flat regions of solutions. A key element of our approach is the natural regularity determined by the nonlinear elliptic operator, for which x 2 is an example of an irregular function. Such a point of view allows us to construct solutions. We apply this idea to numerical simulations for typical initial data. Due to the nature of Dirichlet data, any monotone function is an equilibrium. We prove that each solution reaches such a steady state in finite time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.