The increased inertia of very high-energy electrons (VHEEs) due to relativistic effects reduces scattering and enables irradiation of deep-seated tumours. However, entrance and exit doses are high for collimated or diverging beams. Here, we perform a study based on Monte Carlo simulations of focused VHEE beams in a water phantom, showing that dose can be concentrated into a small, well-defined
volumetric element
, which can be shaped or scanned to treat deep-seated tumours. The dose to surrounding tissue is distributed over a larger volume, which reduces peak surface and exit doses for a single beam by more than one order of magnitude compared with a collimated beam.
Very high energy electron (VHEE) beams have been proposed as an alternative radiotherapy modality to megavoltage photons; they penetrate deeply without significant scattering in inhomogeneous tissue because of their high relativistic inertia. However, the depth dose distribution of a single, collimated VHEE beam is quasi-uniform, which can lead to healthy tissue being overexposed. This can be largely overcome by focusing the VHEE beam to a small spot. Here, we present experiments to demonstrate focusing as a means of concentrating dose into small volumetric elements inside a target. We find good agreement between measured dose distributions and Monte Carlo simulations. Focused radiation beams could be used to precisely target tumours or hypoxic regions of a tumour, which would enhance the efficacy of radiotherapy. The development of new accelerator technologies may provide future compact systems for delivering these focused beams to tumours, a concept that can also be extended to X-rays and hadrons.
As an alternative modality to conventional radiotherapy, electrons with energies above 50 MeV penetrate deeply into tissue, where the dose can be absorbed within a tumour volume with a relatively small penumbra. We investigate the physical properties of VHEEs and review the state-of-the-art in treatment planning and dosimetry. We discuss the advantages of using a laser wakefield accelerator (LWFA) and present the characteristic features of the electron bunch produced by the LWFA and compare them with that from a conventional linear accelerator.
High energy attosecond electron bunches from the laser-plasma wakefield accelerator (LWFA) are potentially useful sources of ultra-short duration X-rays pulses, which can be used for ultrafast imaging of electron motion in biological and physical systems. Electron injection in the LWFA depends on the plasma density and gradient, and the laser intensity. Recent research has shown that injection of attosecond electron bunches is possible using a short plasma density ramp. For controlled injection it is necessary to keep both the laser intensity and background plasma density constant, but set to just below the threshold for injection. This ensures that injection is only triggered by an imposed density perturbation; the peak density should also not exceed the threshold for injection. A density gradient that only persists over a short range can lead to the injection of femtosecond duration bunches, which are then Lorentz contracted to attoseconds on injection. We consider an example of a sin 2 shaped modulation where the gradient varies until the downward slope exceeds the threshold for injection and then reduces subsequently to prevent any further injection. The persistence above the threshold determines the injected bunch length, which can be varied. We consider several designs of plasma media including density perturbations formed by shaped Laval nozzles and present an experimental and theoretical study of the modulated media suitable for producing attosecond-duration electron bunches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.