a b s t r a c tInvestigations into the surface modification of a Ti-15Mo alloy via plasma electrolytic oxidation are reported. The oxidation process was conducted in a solution containing Ca(H 2 PO 2 ) 2 , H 3 PO 4 , or (HCOO) 2 Ca. Anodisation was performed at voltages in the range of 100-400 V. The morphology of the sample surface did not change during alloy oxidation at lower voltages. Higher voltages led to the incorporation of calcium and phosphorus or of calcium only into the formed oxide layer and to significant modification of the surface morphology. Based on the SEM and EDX analysis results, a set of samples was selected for further investigations. To study the surface of the Ti-Mo alloy after anodic oxidation, we used scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), thin-layer X-ray diffraction (TL-XRD), and X-ray photoelectron spectroscopy (XPS). The electrochemical characteristics of the modified alloy in Ringer's solution were determined. Anodisation results in a considerable increase in the corrosion resistance of the Ti-15Mo alloy.
Titanium and its aluminum and vanadium-free alloys have especially great potential for medical applications. Electrochemical surface modification improves their surface bioactivity and stimulates osseointegration process. In this work, the effect of plasma electrolytic oxidation of the β-type alloy Ti-15Mo surface on its bioactivity is presented. Bioactivity of the modified alloy was investigated by immersion in simulated body fluid (SBF). Biocompatibility of the modified alloys were tested using human bone marrow stromal cells (hBMSC) and wild intestinal strains (DV/A, DV/B, DV/I/1) of Desulfovibrio desulfuricans bacteria. The particles of apatite were formed on the anodized samples. Human BMSC cells adhered well on all the examined surfaces and expressed ALP, collagen, and produced mineralized matrix as determined after 10 and 21 days of culture. When the samples were inoculated with D. desulfuricans bacteria, only single bacteria were visible on selected samples. There were no obvious changes in surface morphology among samples. Colonization and bacterial biofilm formation was observed on as-ground sample. In conclusion, the surface modification improved the Ti-15Mo alloy bioactivity and biocompatibility and protected surface against colonization of the bacteria. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 903-913, 2016.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.