PurposeThe aim of the research is to determine the influence of photovoltaic (PV) installation and the share of façade glazing on the energy profile of nursery buildings in the Baltic Sea region, as well as defining the most favorable configuration in terms of energy efficiency.Design/methodology/approachThe article provides comparative calculations of energy performance indicators (Ep, Ed, Eu) and CO2 emissions (mCO2) made for the defined model of the nursery. It includes calculations concerning energy performance of the building, depending on its PV power (0–60 kWp), PV efficiency (100 and 85%) and façade glazing ratio (GR = 25%, 50% and 75%).FindingsThe results of the research indicate that an increase in the PV power exerts proportional impact on the reduction of the Ep and Ed indicators, as well as on the CO2 emissions. Only low GR values (25%) reduce the Eu indicator significantly. Decrease in high range of GR values (over 50%) does not provide proportional effects. In the variant: 60 kWp (100% efficiency) with GR = 25%, the biggest share (99.5%) of RES was obtained. This proves that the concept of energy independent nursery buildings is feasible and reasonable in the examined location.Practical implicationsDesigning buildings towards environmental neutrality requires laborious pre-design conceptual work before developing the right solutions. The set of results of the relationship between the variables of the building's envelope, energy performance indicators and the required involvement of active RES installations to achieve high energy performance of a building presented in the article is valuable. It allows for a preliminary decision of the direction of the design solutions selection in the design process of public utility buildings, such as nurseries. Thus, it may significantly shorten the pre-design analysis process for the location of the southern part of the Baltic Sea region.Originality/valueThe novelty of the paper relies on examining the dependences between PV power and façade glazing ratio in terms of their influence on energy profile of nursery buildings.
This article aims to investigate the impact exerted by different types of covering an atrium with glazing on the energy performance of a kindergarten building, provided by the authors as a conceptual design. The considered types of atria included an open atrium, a glazed atrium, and an atrium that operated as a hybrid system. Additionally, the following aspects were taken into consideration: the effect of a glazing-integrated PV system (BIPV); the variety of thermal features represented by the inner boundary between the conditioned and the unconditioned space (Uiu); and the atrium space air-exchange ratio (nue) on the energy balance of the building. Energy performance indicators, including energy demands for space heating and cooling (Eu), delivered energy (Ed), and primary energy (Ep) indicators for heating and cooling mode were estimated for the moderate climates and two locations of the building model, i.e., for Warsaw (Central Poland) and Ahlbeck (Northern Germany). The research results prove that the glazed atrium exerts the most beneficial impact on the energy performance of the building. Nevertheless, certain variables must be considered, especially the air-exchange ratio of the atrium space, as they significantly influence the total annual energy performance. The results obtained with regard to the effect exerted by the presence of BIPV systems differ from those usually expected. This is due to the effect of the total solar-energy-transmittance value (g) modulation caused by the system and, finally, by a significant reduction in passive solar-gain harvesting, which is important for heating-mode results in examined climate conditions. Taking the present analysis into account, it can be concluded that the energy and environmental effects of the glazed integrated PV systems in temperate climates are strongly influenced by the environmental conditions, and, in some cases, these solutions may prove to be not efficient enough in terms of the energy and costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.